Abstract:
A display device includes a display panel, a dimming controller, and a panel driver. The display panel includes a plurality of pixels. The dimming controller generates at least one temporary voltage set by performing a first interpolating operation using a (j)th band voltage set and a (j+1)th band voltage set among first through (i)th band voltage sets corresponding to first through (i)th dimming bands, respectively, and generates a grayscale gamma voltage set corresponding to target luminance by performing a second interpolating operation using the temporary voltage set and the (j)th band voltage set. The panel driver drives the display panel by converting image data into a data signal based on the grayscale gamma voltage set and by providing the data signal to the pixels.
Abstract:
Methods of correcting gamma and a display device employing the same are disclosed. In one aspect, the method includes periodically measuring, at a plurality of predetermined times, a single color measurement luminance related to a single color component that is displayed on the display panel. The method further includes calculating a luminance difference between the single color measurement luminance and a single color target luminance. The single color target luminance is a target luminance of the single color component at each of the predetermined times. The method also includes changing a gamma setting for a plurality of data signals provided to the display panel based on the luminance difference.
Abstract:
A display device includes a display panel including pixels; and a timing controller to calculate a grayscale usage ratio of input data and to determine an automatic-current-limit rate based on the grayscale usage ratio, the automatic-current-limit rate representing a power saving rate.
Abstract:
A head mounted display device includes a display panel including a first display region and a second display region which is arranged at a first angle with respect to the first display region; a reflective panel arranged at a second angle with respect to the second display region, to output a first transmitted light by transmitting a first light which is output from the first display region, and to output a second reflected light by reflecting a second light output from the second display region; and a lens to collect the first transmitted light and the second reflected light.