Abstract:
A display device comprises a first electrode, a second electrode disposed to be spaced apart from the first electrode and face the first electrode, a first insulating layer disposed to cover the first electrode and the second electrode, a second insulating layer disposed on at least a part of the first insulating layer and exposing at a part of a region where the first electrode and the second electrode overlaps the first insulating layer and at least one light emitting element on the exposed first insulating layer between the first electrode and the second electrode, wherein the second insulating layer includes at least one opening exposing the first insulating layer and disposed to be spaced apart from each other on a region where the first electrode and the second electrode face each other, and a bridge portion between the openings, and the light emitting element is disposed on the opening.
Abstract:
A display device including a substrate and a plurality of pixels in a display region of the substrate. Each of the pixels includes first and second sub-pixels, and each of the first and second sub-pixels has a light emitting region for emitting light. The first sub-pixel includes a first light emitting element in the light emitting region and configured to emit visible light. The second sub-pixel includes a second light emitting element in the light emitting region and configured to emit infrared light and a light receiving element configured to receive the infrared light emitted from the second light emitting element to detect a user's touch. The second light emitting element and the light receiving element in the second sub-pixel are electrically insulated from and optically coupled to each other to form a photo-coupler.
Abstract:
A display device comprises a first electrode, a second electrode disposed to be spaced apart from the first electrode and face the first electrode, a first insulating layer disposed to cover the first electrode and the second electrode, a second insulating layer disposed on at least a part of the first insulating layer and exposing at a part of a region where the first electrode and the second electrode overlaps the first insulating layer and at least one light emitting element on the exposed first insulating layer between the first electrode and the second electrode, wherein the second insulating layer includes at least one opening exposing the first insulating layer and disposed to be spaced apart from each other on a region where the first electrode and the second electrode face each other, and a bridge portion between the openings, and the light emitting element is disposed on the opening.
Abstract:
A light emitting device may include: a substrate including a plurality of unit light emitting regions; and first to fourth insulating layers sequentially on the substrate. Each of the unit light emitting regions may include: at least one light emitting element on the first insulating layer, the at least one light emitting element having a first end portion and a second end portion in a length direction thereof; first and second partition walls on the substrate, and the first and second partition walls being spaced apart from each other; a first reflective electrode on the first partition wall and a second reflective electrode on the second partition wall; a first contact electrode on the first reflective electrode, the first contact electrode connecting the first reflective electrode and the first end portion of the light emitting element; a second contact electrode on the second reflective electrode, the second contact electrode connecting the second reflective electrode and the second end portion of the light emitting element; and a conductive pattern provided between the first insulating layer and the first contact electrode, the conductive pattern surrounding the first and second reflective electrodes when viewed on a plane.
Abstract:
A display device includes a plurality of data lines to supply data voltages, a plurality of scan lines to supply scan signals, and a first pixel connected to at least one of the plurality of data lines, and connected to at least one of the plurality of scan lines, the first pixel including a first light-emitting diode of a first color, in which an anode is connected to a first node and a cathode is connected to a reference voltage line, and a second light-emitting diode of a second color that is different from the first color, in which an anode is connected to the reference voltage line, and a cathode is connected to the first node.
Abstract:
A liquid crystal display includes first and second substrates facing each other and including pixels in a first direction and in a second direction that crosses the first direction, and pixel electrodes disposed in the pixels, respectively, over a common electrode, each of the pixel electrodes including branch electrodes, which extend in the second direction, where the pixels include first pixels, which display a white color, and second pixels, which display one of a red color, a green color, and a blue color, the pixel electrodes include first pixel electrodes, which are disposed in the first pixels, respectively, and second pixel electrodes, which are disposed in the second pixels, respectively, and a first average distance between every two adjacent first and second pixel electrodes in the first direction is smaller than a second average distance between every two adjacent second pixel electrodes in the first direction.
Abstract:
Provided is a display device.The display device includes: a substrate; a light blocking pattern disposed on the substrate; a semiconductor pattern disposed on the light blocking pattern; a gate insulating layer disposed on the semiconductor pattern; a gate wiring; an interlayer insulating layer formed on the gate wiring; a first contact hole for exposing the source area; a data wiring disposed to extend in the second direction on the interlayer insulating layer and electrically connected to the source area via the first contact hole; a first passivation layer disposed on the data wiring; a second contact hole, which is disposed between the neighboring protrusion portions of the light blocking pattern so as not to overlap the light blocking pattern, and exposes the drain area; and a pixel electrode disposed on the first passivation layer and electrically connected to the drain area through the second contact hole.
Abstract:
A liquid crystal display device is provided. A liquid crystal display device, comprising: a first substrate and a second substrate facing each other; a liquid crystal layer disposed between the first substrate and the second substrate; a semiconductor layer disposed on the first substrate and including a channel area upon which a source electrode and a drain electrode are spaced apart from each other while facing each other; an organic layer disposed on the channel and including an opening that exposes at least a part of the channel area; and a common electrode disposed on the organic layer and including a first opening that extends across the channel area.
Abstract:
A liquid crystal display includes a first substrate, a gate line and a data line disposed on the first substrate, a first insulating layer disposed on the gate line and the data line, a first electrode disposed on the first insulating layer and having a flat form in a planar shape, a second insulating layer disposed on the first electrode, and a second electrode disposed on the second insulating layer and including a plurality of branch electrodes, where a width of a branch electrode of the plurality of branch electrodes is equal to or less than about 2 micrometers.
Abstract:
An embodiment of the disclosure provides a display device including a substrate including a display area, and a peripheral area disposed on a side of the display area, a first alignment electrode, a second alignment electrode, and a third alignment electrode that overlap the display area, are spaced apart from each other in a first direction, and extend in a second direction intersecting the first direction, light emitting elements disposed between the first alignment electrode and the second alignment electrode, and between the second alignment electrode and the third alignment electrode, and a data line overlapping the second alignment electrode in a plan view and extending in the second direction. A length of a first width of the data line in the first direction is less than or equal to a length of a second width of the second alignment electrode in the first direction.