Abstract:
The present invention relates to the use of a polycarbonate composition comprising an aromatic polycarbonate manufactured by an interfacial process and having a melt volume rate (MVR) of from 1-10 cm3/10 min (ISO 1133, 300° C., 1.2 kg), from 0.01 wt. % to 0.30 wt. % based on the weight of the polycarbonate composition, of an epoxy additive having at least two epoxy groups per molecule, and from 0.01 wt. % to 0.30 wt. % based on the weight of the polycarbonate composition, of a phenolic diphosphite derived from pentaerythritol, in an injection moulding process for the manufacture of an injection moulded article for reducing the formation of bubbles in said injection moulded article.
Abstract:
In an embodiment, a method for making a thermoplastic composition, comprising: melt polymerizing a polycarbonate, extruding and melt filtering the polycarbonate to form a melt filtered polycarbonate; forming the thermoplastic composition comprising the melt filtered polycarbonate, 0.03 to 0.05 wt % of a triacylglyceride release agent; and 0.10 to 0.14 wt % of a UV stabilizer; wherein the weight percentages are based on the total weight of the composition; and extruding the thermoplastic composition.
Abstract:
A process for manufacturing a polycarbonate composition includes melt polymerizing a dihydroxy compound and a carbonate compound in the presence of a catalyst to form a polycarbonate; and adding 1 to 400 ppm of glycerol tristearate to form the polycarbonate composition, wherein the polycarbonate composition is unquenched.
Abstract:
A process for manufacturing a polycarbonate composition includes melt polymerizing a dihydroxy compound and a carbonate compound in the presence of a catalyst to form a polycarbonate; and adding 1 to 400 ppm of glycerol tristearate to form the polycarbonate composition, wherein the polycarbonate composition is unquenched.
Abstract:
In an embodiment, a method for making a thermoplastic composition, comprising: melt polymerizing a polycarbonate, extruding and melt filtering the polycarbonate to form a melt filtered polycarbonate; forming the thermoplastic composition comprising the melt filtered polycarbonate, 0.03 to 0.05 wt % of a triacylglyceride release agent; and 0.10 to 0.14 wt % of a UV stabilizer; wherein the weight percentages are based on the total weight of the composition; and extruding the thermoplastic composition.
Abstract:
In an embodiment, a method for the manufacture of an injection molded article in an injection mold comprises at least one flow length of at least 50 cm, the flow length being defined as the shortest distance between a point of injection in the mold and an inner mold wall, the method comprising injection molding a polycarbonate composition comprising an aromatic polycarbonate, from 0.01 wt. % to 0.30 wt. % based on the weight of the polycarbonate composition of an epoxy additive having at least two epoxy groups per molecule, and from 0.01 wt. % to 0.30 wt. % based on the weight of the polycarbonate composition of a phenolic diphosphite derived from pentaerythritol.
Abstract:
The present disclosure relates to thermoplastic compositions, methods of making thermoplastic compositions, and articles made from thermoplastic compositions. The disclosed compositions comprise a polycarbonate polymer, a triacylglyceride release agent, and a monoacylglyceride release agent. In an embodiment, the thermoplastic composition comprises: greater than 90 weight percent based on the total weight of the composition of a melt polycarbonate polymer; a triacylglyceride release agent; and a monoacylglyceride release agent. The total amount of triacylglyceride release agent and the monoacylglyceride release agent is 0.01 to 0.5 weight percent based on the total weight of the composition.