Abstract:
Novel self-immolative dendritic compounds which have a plurality of cleavable trigger units and hence can release a chemical moiety at their focal point upon a multi-triggering mechanism are disclosed. The novel self-immolative dendritic compounds are gated by a molecular logic gate, being either an AND or OR logic gate and hence can be beneficially used in a variety of biological, chemical and physical applications. Processes of preparing, compositions containing and methods utilizing the novel dendritic compounds are further disclosed.
Abstract:
A self-immolative dendrimer capable of releasing all of its tail units upon a single cleavage event, methods of synthesizing same and uses thereof are disclosed.
Abstract:
The present invention provides a compound that includes an active therapeutic agent attached to a blocking moiety that is sensitive to the catalytic action of molecules having retro-aldol and retro-Michael catalytic activity, methods for making such compounds and methods of converting such compounds to active therapeutic agents using molecules having aldolase activity.
Abstract:
The present invention relates to the field of drug delivery. More specifically, the invention relates to the preparation and use of a bacteriophage conjugated through a labile/non labile linker or directly to at least 1,000 therapeutic drug molecules such that the drug molecules are conjugated to the outer surface of the bacteriophage. The bacteriophage optionally displays on its coat a ligand that endows it with specificity towards target cells. Thus, there is provided a targeted, high-capacity drug delivery system useful for the treatment of various pathological conditions.
Abstract:
The present invention provides a compound that includes an active therapeutic agent attached to a blocking moiety that is sensitive to the catalytic action of molecules having retro-aldol and retro-Michael catalytic activity, methods for making such compounds and methods of converting such compounds to active therapeutic agents using molecules having aldolase activity.
Abstract:
The present invention relates to the field of drug delivery. More specifically, the invention relates to the preparation and use of a bacteriophage conjugated through a labile/non labile linker or directly to at least 1,000 therapeutic drug molecules such that the drug molecules are conjugated to the outer surface of the bacteriophage. The bacteriophage optionally displays on its coat a ligand that endows it with specificity towards target cells. Thus, there is provided a targeted, high-capacity drug delivery system useful for the treatment of various pathological conditions.
Abstract:
Conjugates of polymers or copolymers having attached thereto an anti-angiogenesis agent and a bisphosphonate bone targeting agent, and processes of preparing same, are disclosed.Pharmaceutical compositions containing these conjugates and uses thereof in the treatment of bone related disorders are also disclosed.
Abstract:
The present invention relates to the field of drug delivery. More specifically, the invention relates to the preparation and use of a bacteriophage conjugated through a labile/non labile linker or directly to at least 1,000 therapeutic drug molecules such that the drug molecules are conjugated to the outer surface of the bacteriophage. The bacteriophage optionally displays on its coat a ligand that endows it with specificity towards target cells. Thus, there is provided a targeted, high-capacity drug delivery system useful for the treatment of various pathological conditions.
Abstract:
Conjugates of polymers or copolymers having attached thereto an anti-angiogenesis agent and a bisphosphonate bone targeting agent, and processes of preparing same, are disclosed.Pharmaceutical compositions containing these conjugates and uses thereof in the treatment of bone related disorders are also disclosed.