Abstract:
One delay circuit is inserted in open loop inside a clock recovery circuit for improving the accuracy of clock recovery. One oscillator signal φ(0) to φ(2i−1) is provided with a basic Step of Time. A rational number of Step of Time corresponding to a bit-duration is measured inside a received flow of bits. The oscillator signal φ(0) to j(2i−1) is transformed into a clock signal CK having active edges of said clock signal in phase with at least one oscillator signal φ(0) to φ(2i−1), two consecutive active edges being separated by a time duration proportional to the integer part of the number of Step of Time. A time delay is computed proportional to the fractional part of the number of Step of Time. The next active edge of the clock signal CK is delayed of said computed delay.
Abstract:
A bridge circuit 10 is provided between first data port A1, A2 and second data port B1, B2. The bridge circuit comprises a first transceiver stage 40 comprising at least one input buffer 11, 14 and at least one tri-state output buffer 12, 13 linked to the first data port, a second transceiver stage 50 comprising at least one input buffer 21, 24 and at least one tri-state output buffer 12, 13 linked to the second data port, a first detection circuit 31 for detecting the arrival of a packet by the first data port, a second detection circuit 37 for detecting the arrival of a packet by the second data port. A selection circuitry 34, 35 enables the output of tri-state output buffer of the first or of the second transceiver stage depending of the detection made by the first and second detection circuits.
Abstract:
One delay circuit is inserted in open loop inside a clock recovery circuit for improving the accuracy of clock recovery. One oscillator signal φ(0) to φ(2i-1) is provided with a basic Step of Time. A rational number of Step of Time corresponding to a bit-duration is measured inside a received flow of bits. The oscillator signal φ(0) to j(2i-1) is transformed into a clock signal CK having active edges of said clock signal in phase with at least one oscillator signal φ(0) to φ(2i-1), two consecutive active edges being separated by a time duration proportional to the integer part of the number of Step of Time. A time delay is computed proportional to the fractional part of the number of Step of Time. The next active edge of the clock signal CK is delayed of said computed delay.
Abstract:
A data communication device comprises an input circuit (DRTC) that converts external data (XDT) into internal data (IDT) on the basis of a sampling signal (SP). A synchronization circuit (SYNC) provides the sampling signal (SP) on the basis of an oscillator signal (OS) and a synchronization value (SV). The synchronization value (SV) is representative of a number of cycles of the oscillator signal (OS) contained within a time interval for a unit of external data. The synchronization value (SV) is an initial value (IV) during an initial synchronization phase and a measured value (MV) during a measurement-based synchronization phase. A control circuit (IFC) carries out a calibration step in which the initial value (IV) is a preprogrammed reset value (RV) and in which the measured value (MV) is stored as a calibration value (CV). The control circuit (IFC) applies the calibration value (CV) as the initial value (IV) in subsequent initial synchronization phases.
Abstract:
A bridge circuit 10 is provided between first data port A1, A2 and second data port B1, B2. The bridge circuit comprises a first transceiver stage 40 comprising at least one input buffer 11, 14 and at least one tri-state output buffer 12, 13 linked to the first data port, a second transceiver stage 50 comprising at least one input buffer 21, 24 and at least one tri-state output buffer 12, 13 linked to the second data port, a first detection circuit 31 for detecting the arrival of a packet by the first data port, a second detection circuit 37 for detecting the arrival of a packet by the second data port. A selection circuitry 34, 35 enables the output of tri-state output buffer of the first or of the second transceiver stage depending of the detection made by the first and second detection circuits.
Abstract:
A method for generating a random number, comprising steps of receiving a data transmission binary signal subjected to phase jitter, generating several oscillator signals substantially of a same average frequency and having distinct respective phases, sampling a status of each of the oscillator signals upon the appearance of edges of the binary signal, and of generating a random number using the statuses of each of the oscillator signals. The method may be applied to an integrated circuit usable in a smart card.
Abstract:
A method for generating a random number, comprising steps of receiving a data transmission binary signal subjected to phase jitter, generating several oscillator signals substantially of a same average frequency and having distinct respective phases, sampling a status of each of the oscillator signals upon the appearance of edges of the binary signal, and of generating a random number using the statuses of each of the oscillator signals. The method may be applied to an integrated circuit usable in a smart card.
Abstract:
A data communication device comprises an input circuit (DRTC) that converts external data (XDT) into internal data (IDT) on the basis of a sampling signal (SP). A synchronization circuit (SYNC) provides the sampling signal (SP) on the basis of an oscillator signal (OS) and a synchronization value (SV). The synchronization value (SV) is representative of a number of cycles of the oscillator signal (OS) contained within a time interval for a unit of external data. The synchronization value (SV) is an initial value (IV) during an initial synchronization phase and a measured value (MV) during a measurement-based synchronization phase. A control circuit (IFC) carries out a calibration step in which the initial value (IV) is a preprogrammed reset value (RV) and in which the measured value (MV) is stored as a calibration value (CV). The control circuit (IFC) applies the calibration value (CV) as the initial value (IV) in subsequent initial synchronization phases.
Abstract:
A method for protecting the execution of a main program against possible traps, including, on occurrence of an instruction from the main program, starting a time counter of a given count according to next instructions of the main program, and executing, once the counter has reached its count, at least one instruction of a secondary program from which the result of the main program depends.
Abstract:
A device for the regeneration of a clock signal from an external serial bus includes a ring oscillator and counter. The ring oscillator provides n phases of a clock signal. Of these n phases, one phase is used as a reference and is applied to the counter. It is thus possible to count the number of entire reference clock signal periods between a first pulse and a second pulse received from the bus. In reading the state of the phases in the oscillator upon reception of the second pulse, a determination is made for a current phase corresponding to the phase delay between the reference clock signal and the second pulse of the bus. By using a regeneration device that also includes a ring oscillator and a counter, it is possible to regenerate the clock signal of the bus with high precision.