Abstract:
A sensor is configured to measure the carbon dioxide concentration in a gas mixture. The sensor has a dielectric layer arranged between a layer-like first electrode and a layer-like second electrode. The second electrode is a composite electrode that has at least one carbonate and/or one phosphate as first material and at least one metal as second material. This sensor can be manufactured by a method comprising applying a layer-like first electrode to a substrate, applying a dielectric layer to the first electrode, and applying a layer-like second electrode to the dielectric layer. The second electrode is applied as a composite electrode that has at least one carbonate and/or one phosphate as first material and has at least one second material that has an electrical conductivity of more than 10-2 S/m.
Abstract:
A sensor element for a pressure sensor, includes a sensor membrane on which a defined number of piezoresistors are situated, the piezoresistors being configured in a circuit in such a way that, when there is a change in pressure an electrical change in voltage can be generated; at least two temperature measuring elements configured in relation to the sensor membrane in such a way that temperatures of the sensor membrane at positions of the piezoresistors can be measured using the temperature measuring elements, an electrical voltage present at the circuit of the piezoresistors due to a temperature gradient being capable of being compensated computationally using the measured temperatures.
Abstract:
A microelectrochemical sensor includes a carrier material composed of a semiconductor substrate, and includes a chemosensitive sensor element. The chemosensitive sensor element is positioned in a first partial region of the carrier material. A heating element is positioned in a region of the chemosensitive sensor element and is configured to regulate a temperature of the chemosensitive sensor element. A microelectronic unit is positioned in a second partial region of the carrier material, and is connected to the chemosensitive sensor element and the heating element via conductor tracks integrated into the carrier material. The microelectronic unit is configured to operate the heating element and the sensor element.
Abstract:
A micromechanical solid-electrolyte sensor device includes a micromechanical carrier substrate having a front side and a back side. The micromechanical solid-electrolyte sensor device also includes a first porous electrode and a second porous electrode. The micromechanical solid-electrolyte sensor device also includes a solid-electrolyte embedded between the first porous electrode and the second porous electrode.
Abstract:
A method for operating a semiconductor gas sensor. The semiconductor gas sensor has a sensor element with a sensor material having a semiconductor, a plurality of measuring electrodes electrically connected to the sensor material for exciting and reading the sensor material, and a control and evaluation device for generating excitation signals and evaluating read measurement signals. A surface of the sensor material is exposed to a gaseous medium. In the method, a first excitation signal and a second excitation signal are applied to the sensor material. The excitation signals have different excitation frequencies. A first measurement signal is read based on the first excitation signal, and a second measurement signal is read based on the second excitation signal. A sensor signal is ascertained based on the excitation signals and the measurement signals.
Abstract:
A sensor element for a pressure sensor, includes a sensor membrane on which a defined number of piezoresistors are situated, the piezoresistors being configured in a circuit in such a way that, when there is a change in pressure an electrical change in voltage can be generated; at least two temperature measuring elements configured in relation to the sensor membrane in such a way that temperatures of the sensor membrane at positions of the piezoresistors can be measured using the temperature measuring elements, an electrical voltage present at the circuit of the piezoresistors due to a temperature gradient being capable of being compensated computationally using the measured temperatures.
Abstract:
A method for producing an integrated micromechanical fluid sensor component includes forming a first wafer with a first Bragg reflector and with a light-emitting device on a first substrate. The light-emitting device is configured to emit light rays in an emission direction from a surface of the light-emitting device facing away from the first Bragg reflector. The method further includes forming a second wafer with a second Bragg reflector and with a photodiode on a second substrate. The photodiode is arranged on a surface of the second Bragg reflector facing towards the second substrate. The method also includes bonding or gluing the first wafer to the second wafer such that there is formed a cavity into which a fluid is introduced and through which the light rays can pass. The method further includes separating the fluid sensor component from the first and the second wafer.
Abstract:
An exhaust gas guide element for conducting at least a portion of an exhaust gas to a sensor for a vehicle. The exhaust gas guide element has a greater extent in a direction of a longitudinal axis than in a direction of a transverse axis, and is gas-permeable along the direction of the longitudinal axis. One end of the gas guide element along the direction of the longitudinal axis is configured as a receiving region, and the opposite end is configured as a measuring region. A sensor can be positioned in the measuring region, and a gas receiving element is positioned in the receiving region.
Abstract:
A sensor device includes a sensor element configured to detect a measurement value based at least in part upon a physical variable, and a support element configured to support the sensor element. The support element has at least one connection region which is located in a section of the support element, and which is configured to connect the section of the support element to a section of the sensor element such that the sensor element is mounted so as to be movable with respect to the support element.
Abstract:
A microelectrochemical sensor having a diaphragm, a web, a first and a second electrode. The diaphragm is permeable to ions of a chemical species, is arranged transversely with respect to a cutout in a base body, and closes off the cutout in a fluid-tight fashion. The web is arranged on a first side of the diaphragm between a first partial surface and a second partial surface, and is designed to adjust a temperature of the diaphragm to an operating temperature using electrical energy. The first electrode has a first partial electrode and a second partial electrode, is permeable to fluid, and is arranged on the first side of the diaphragm. The web prevents electrical contact between the first electrode and the diaphragm. The second electrode has a third partial electrode and a fourth partial electrode, is also permeable to fluid, and is arranged on a second side of the diaphragm.