Abstract:
Miniaturization of a multiphase type power supply device can be achieved. A power supply control unit in which, for example, a microcontroller unit, a memory unit and an analog controller unit are formed over a single chip, a plurality of PWM-equipped drive units, and a plurality of inductors configure a multiphase power supply. The microcontroller unit outputs clock signals each having a frequency and a phase defined based on a program on the memory unit to the respective PWM-equipped drive units. The analog controller unit detects a difference between a voltage value of a load and a target voltage value acquired via a serial interface and outputs an error amp signal therefrom. Each of the PWM-equipped drive units drives each inductor by a peak current control system using the clock signal and the error amp signal.
Abstract:
In a switching power source which controls a current which flows in an inductor through a switching element which performs a switching operation in response to a PWM signal, and forms an output voltage by a capacitor which is provided in series in the inductor, a booster circuit which is constituted of a bootstrap capacity and a MOSFET is provided between an output node of the switching element and a predetermined voltage terminal. The boosted voltage is used as an operational voltage of a driving circuit of the switching element, another source/drain region and a substrate gate are connected with each other, and a junction diode between one source/drain region and the substrate gate is inversely directed with respect to the boosted voltage which is formed by the bootstrap capacity.
Abstract:
A voltage regulator has a voltage converter circuit and a control unit. The control unit controls the voltage converter circuit so that an output voltage attains a target voltage when the voltage regulator is in a no-load condition so as to have a transition characteristic in which the output voltage decreases with increase in the load current. The control unit calculates deviation between the output voltage and an ideal value thereof when a load condition of the voltage regulator is a first load condition, and corrects the target voltage by the output voltage adjustment unit. so The control unit also calculates deviation between rate of change of the output voltage with respect to the load current and an ideal value thereof, and corrects the transition characteristic so that the deviation becomes small to minimize deviation.
Abstract:
The present invention realized miniaturization of a power supply device using a multiphase system. The power supply device includes, for example, a common control unit, a plurality of PWM-equipped drive units, and a plurality of inductors. The common control unit outputs clock signals respectively different in phase to the PWM-equipped drive units. The clock signals are controllable in voltage state individually respectively. For example, the clock signal can be brought to a high impedance state. In this case, the PWM-equipped drive unit detects this high impedance state and stops its own operation. It is thus possible to set the number of phases in multiphase arbitrarily without using another enable signal or the like.