Abstract:
A voltage regulator has a voltage converter circuit and a control unit. The control unit controls the voltage converter circuit so that an output voltage attains a target voltage when the voltage regulator is in a no-load condition so as to have a transition characteristic in which the output voltage decreases with increase in the load current. The control unit calculates deviation between the output voltage and an ideal value thereof when a load condition of the voltage regulator is a first load condition, and corrects the target voltage by the output voltage adjustment unit. so The control unit also calculates deviation between rate of change of the output voltage with respect to the load current and an ideal value thereof, and corrects the transition characteristic so that the deviation becomes small to minimize deviation.
Abstract:
A power-supply apparatus according to an aspect includes an inductor, a transistor that supplies, in an on-state, a current to the input side of the inductor, a second transistor that becomes, when the first transistor is in an off-state, an on-state and thereby brings the input side of the inductor to a predetermined potential, a signal generation unit that generates voltage signals corresponding to a current flowing to the inductor, an amplifier that outputs a current according to the voltage signals, a converter that converts the current output from the amplifier into a voltage signal, and a control unit that controls the transistors based on a first feedback signal corresponding to the voltage on the output side of the inductor and the voltage signal, which is used as a second feedback signal.
Abstract:
Miniaturization of a multiphase type power supply device can be achieved. A power supply control unit in which, for example, a microcontroller unit, a memory unit and an analog controller unit are formed over a single chip, a plurality of PWM-equipped drive units, and a plurality of inductors configure a multiphase power supply. The microcontroller unit outputs clock signals each having a frequency and a phase defined based on a program on the memory unit to the respective PWM-equipped drive units. The analog controller unit detects a difference between a voltage value of a load and a target voltage value acquired via a serial interface and outputs an error amp signal therefrom. Each of the PWM-equipped drive units drives each inductor by a peak current control system using the clock signal and the error amp signal.
Abstract:
A power-supply apparatus according to an aspect includes an inductor, a transistor that supplies, in an on-state, a current to the input side of the inductor, a second transistor that becomes, when the first transistor is in an off-state, an on-state and thereby brings the input side of the inductor to a predetermined potential, a signal generation unit that generates voltage signals corresponding to a current flowing to the inductor, an amplifier that outputs a current according to the voltage signals, a converter that converts the current output from the amplifier into a voltage signal, and a control unit that controls the transistors based on a first feedback signal corresponding to the voltage on the output side of the inductor and the voltage signal, which is used as a second feedback signal.