PIECEWISE LINEAR NEURON MODELING
    1.
    发明申请
    PIECEWISE LINEAR NEURON MODELING 有权
    PIECEWISE线性神经元建模

    公开(公告)号:US20140143190A1

    公开(公告)日:2014-05-22

    申请号:US14070652

    申请日:2013-11-04

    Abstract: Methods and apparatus for piecewise linear neuron modeling and implementing artificial neurons in an artificial nervous system based on linearized neuron models. One example method for operating an artificial neuron generally includes determining that a first state of the artificial neuron is within a first region; determining a second state of the artificial neuron based at least in part on a first set of linear equations, wherein the first set of linear equations is based at least in part on a first set of parameters corresponding to the first region; determining that the second state of the artificial neuron is within a second region; and determining a third state of the artificial neuron based at least in part on a second set of linear equations, wherein the second set of linear equations is based at least in part on a second set of parameters corresponding to the second region.

    Abstract translation: 基于线性神经元模型的人造神经系统中分段线性神经元建模和实现人造神经元的方法和装置。 用于操作人造神经元的一个示例性方法通常包括确定人造神经元的第一状态在第一区域内; 至少部分地基于第一组线性方程确定人造神经元的第二状态,其中所述第一组线性方程式至少部分地基于对应于所述第一区域的第一组参数; 确定人造神经元的第二状态在第二区域内; 以及至少部分地基于第二组线性方程确定所述人造神经元的第三状态,其中所述第二组线性方程式至少部分地基于对应于所述第二区域的第二组参数。

    ASYNCHRONOUS PULSE MODULATION FOR THRESHOLD-BASED SIGNAL CODING
    2.
    发明申请
    ASYNCHRONOUS PULSE MODULATION FOR THRESHOLD-BASED SIGNAL CODING 审中-公开
    用于基于阈值信号编码的异步脉冲调制

    公开(公告)号:US20150372805A1

    公开(公告)日:2015-12-24

    申请号:US14513997

    申请日:2014-10-14

    Inventor: Young Cheul YOON

    Abstract: A method of signal processing includes comparing an input signal with one or more positive threshold values and one or more negative threshold values. The method also includes generating an output signal based on the comparison of the input signal with the positive threshold(s) and negative threshold(s). The method further includes feeding the output signal back into a decaying reconstruction filter to create a reconstructed signal and combining the reconstructed signal with the input signal.

    Abstract translation: 一种信号处理方法包括将输入信号与一个或多个正阈值和一个或多个负阈值进行比较。 该方法还包括基于输入信号与正阈值和负阈值的比较来产生输出信号。 该方法还包括将输出信号反馈回衰减重建滤波器以产生重构信号并将重构信号与输入信号组合。

    PIECEWISE LINEAR NEURON MODELING
    3.
    发明申请

    公开(公告)号:US20140143194A1

    公开(公告)日:2014-05-22

    申请号:US14070679

    申请日:2013-11-04

    Abstract: Methods and apparatus for piecewise linear neuron modeling and implementing artificial neurons in an artificial nervous system based on linearized neuron models. One example method for operating an artificial neuron generally includes determining that a first state of the artificial neuron is within a first region; determining a second state of the artificial neuron based at least in part on a first set of linear equations, wherein the first set of linear equations is based at least in part on a first set of parameters corresponding to the first region; determining that the second state of the artificial neuron is within a second region; and determining a third state of the artificial neuron based at least in part on a second set of linear equations, wherein the second set of linear equations is based at least in part on a second set of parameters corresponding to the second region.

    ARTIFICIAL NEURONS AND SPIKING NEURONS WITH ASYNCHRONOUS PULSE MODULATION
    4.
    发明申请
    ARTIFICIAL NEURONS AND SPIKING NEURONS WITH ASYNCHRONOUS PULSE MODULATION 审中-公开
    人工神经元和神经元与异常脉冲调制

    公开(公告)号:US20160042271A1

    公开(公告)日:2016-02-11

    申请号:US14522348

    申请日:2014-10-23

    CPC classification number: G06N3/08 G06N3/04 G06N3/049

    Abstract: A method for configuring an artificial neuron includes receiving a set of input spike trains comprising asynchronous pulse modulation coding representations. The method also includes generating output spikes representing a similarity between the set of input spike trains and a spatial-temporal filter.

    Abstract translation: 一种用于配置人造神经元的方法包括接收包括异步脉冲调制编码表示的一组输入尖峰序列。 该方法还包括产生表示在该组输入尖峰火车和空间 - 时间滤波器之间的相似性的输出尖峰。

    PIECEWISE LINEAR NEURON MODELING
    5.
    发明申请
    PIECEWISE LINEAR NEURON MODELING 审中-公开
    PIECEWISE线性神经元建模

    公开(公告)号:US20140143191A1

    公开(公告)日:2014-05-22

    申请号:US14070659

    申请日:2013-11-04

    Abstract: Methods and apparatus for piecewise linear neuron modeling and implementing one or more artificial neurons in an artificial nervous system based on one or more linearized neuron models. One example method (for implementing a combination of a plurality of neuron models in a system of neural processing units) generally includes loading parameters for a first neuron model selected from the plurality of neuron models into a first neural processing unit, determining a first state of the first neural processing unit based at least in part on the parameters for the first neuron model, and determining a second state of the first neural processing unit based at least in part on the parameters for the first neuron model and on the first state. This method may also include updating the plurality of neuron models (e.g., by adding, deleting, or adjusting parameters for the first neuron model or another neuron model).

    Abstract translation: 基于一个或多个线性化神经元模型的分段线性神经元建模和实现人造神经系统中的一个或多个人造神经元的方法和装置。 一个示例性方法(用于实现神经处理单元的系统中的多个神经元模型的组合)通常包括将从多个神经元模型中选择的第一神经元模型的参数加载到第一神经处理单元中,确定第一状态 所述第一神经处理单元至少部分地基于所述第一神经元模型的参数,以及至少部分地基于所述第一神经元模型的参数和所述第一状态来确定所述第一神经处理单元的第二状态。 该方法还可以包括更新多个神经元模型(例如,通过添加,删除或调整第一神经元模型或另一神经元模型的参数)。

    EVENT-DRIVEN TEMPORAL CONVOLUTION FOR ASYNCHRONOUS PULSE-MODULATED SAMPLED SIGNALS
    6.
    发明申请
    EVENT-DRIVEN TEMPORAL CONVOLUTION FOR ASYNCHRONOUS PULSE-MODULATED SAMPLED SIGNALS 审中-公开
    用于异步脉冲调制采样信号的事件驱动时间演变

    公开(公告)号:US20160071005A1

    公开(公告)日:2016-03-10

    申请号:US14835664

    申请日:2015-08-25

    CPC classification number: G06N3/08 G06F17/15 G06N3/04 G06N3/049

    Abstract: A method of processing asynchronous event-driven input samples of a continuous time signal, includes calculating a convolutional output directly from the event-driven input samples. The convolutional output is based on an asynchronous pulse modulated (APM) encoding pulse. The method further includes interpolating output between events.

    Abstract translation: 处理连续时间信号的异步事件驱动输入样本的方法包括直接从事件驱动输入样本计算卷积输出。 卷积输出基于异步脉冲调制(APM)编码脉冲。 该方法还包括在事件之间内插输出。

Patent Agency Ranking