Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer and particularly wireless power transfer to remote system such as electric vehicles. In one aspect an apparatus for use with a wireless power transfer transmitter device comprising a first inductive element for generating a magnetic field, is provided. The apparatus comprises a direct current (DC) power source having an adjustable output voltage. The apparatus also comprises an inverter configured to convert the adjustable output voltage of the DC power source to alternating current. The apparatus also comprises at least one controller configured to receive an indication of current in the first inductive element and control the output voltage of the DC power source in response to the indication of current in the first inductive element. The apparatus reduces distortion signals in the alternating current output of the inverter while maintaining current in the inductive element substantially constant.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer and particularly wireless power transfer to remote system such as electric vehicles. In one aspect a circuit for wireless power transfer is provided. The circuit comprises an inductive element for receiving wireless power from a magnetic field associated with a wireless power transfer transmitter device. The circuit further comprises an output configured to be connected to a load. The circuit further comprises a voltage detector configured to detect the voltage across the load. The circuit further comprises at least one switching element between the inductive element and the output. The circuit further comprises a controller configured to maintain a current in the inductive element substantially constant as the voltage detected across the load varies.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer and particularly wireless power transfer to remote system such as electric vehicles. In one aspect a circuit for wireless power transfer is provided. The circuit comprises an inductive element for receiving wireless power from a magnetic field associated with a wireless power transfer transmitter device. The circuit further comprises an output configured to be connected to a load. The circuit further comprises a voltage detector configured to detect the voltage across the load. The circuit further comprises at least one switching element between the inductive element and the output. The circuit further comprises a controller configured to maintain a current in the inductive element substantially constant as the voltage detected across the load varies.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer and particularly wireless power transfer to remote systems such as electric vehicles. In one aspect the disclosure provides for an apparatus for wirelessly transmitting power. The apparatus includes a first conductive structure configured to generate a first magnetic field in response to receiving a first time-varying signal from a power source. The apparatus includes a second conductive structure configured to generate a second magnetic field in response to receiving a second time-varying signal from the power source. The first and second structures are positioned to maintain a substantial absence of mutual coupling between the first and second magnetic fields.
Abstract:
Systems, methods and apparatuses for wireless power transfer are disclosed. In one aspect, a wireless power transfer apparatus is provided comprising a casing with at least one projecting member projecting from an inner side of the surface of the casing that is subject to external compression forces. An induction coil and other components such as insulating layers and magnetically permeable members are positioned around at least one of the projecting members and maintained in position by the projecting members. The wireless power transfer apparatus is able to withstand large compressive forces, such as those imparted by heavy vehicles and the like passing over the apparatus when positioned on the ground in a wireless power transfer system.
Abstract:
A power receiver is configured to supply current to a load and to be wirelessly operatively coupled to a power transmitter and includes a plurality of inductive elements. The power receiver further includes a circuit operatively coupled to the plurality of inductive elements and is configured to be selectively switched among a plurality of coupling states. The circuit is further configured to be selectively switched such that each inductive element has a reactance state of a plurality of reactance states. The power receiver further includes a controller configured to select the coupling state and to select the reactance state of each inductive element based on one or more signals indicative of one or more operating parameters of at least one of the power receiver and the power transmitter.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer. In one aspect, an apparatus for wirelessly transmitting power is provided. The apparatus includes a first conductive structure configured to generate a first magnetic field based on a first current received from a power source. The apparatus further includes a second conductive structure configured to generate a second magnetic field based on a second current from the power source. The apparatus further includes a controller configured to determine a respective coupling coefficient between each of the first and second conductive structures and a third conductive structure configured to receive power via the first or the second magnetic field. The controller is further configured to adjust the first or second current applied to the first and second conductive structures based at least in part on the coupling coefficients.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer and particularly wireless power transfer to remote systems such as electric vehicles. In one aspect, a wireless power receiver includes a first inductive element, a power supply, and a communication receiver. The first inductive element is configured to receive wireless power from a first electromagnetic field generated by a wireless power transmitter including a second inductive element. The power supply is configured to supply a current to the first inductive element to generate a second electromagnetic field and induce a current in the second inductive element. The communication receiver is configured to receive an indication of a distance between the first inductive element and the second inductive element based on the induced current in the second inductive element.
Abstract:
This disclosure provides systems, methods and apparatus for connecting and operating an AC source to a load. In one aspect a power supply topology is provided which may be of particular use in the area of wireless power transfer. The topology allows for multiple sources to be operatively connected to a single conductive structure configured to generate a field, maintaining overall system power while lowering the power output of each source.
Abstract:
Systems, methods and apparatus for a wireless power transfer are disclosed. In one aspect a wireless power transfer apparatus is provided. The apparatus includes a casing. The apparatus further includes an electrical component housed within the casing. The apparatus further includes a sheath housed within the casing. The apparatus further includes a conductive filament housed within the sheath. The electrical component is electrically connected with the conductive filament. The casing is filled with a settable fluid bound with the sheath to form a structural matrix.