Abstract:
Methods and apparatuses are directed to calibrating a misconfigured wireless access point. One method may include receiving a position of mobile station(s) and wireless signal model measurements derived from packets exchanged between the mobile station(s) and a plurality of wireless access points, receiving positions and/or identities of the plurality of wireless access points used in determining the position of the mobile station(s), comparing a position of the mobile station(s) with wireless signal model measurements, and identifying a misconfigured wireless access point based upon the comparing. Another method may include receiving positions associated with a plurality of wireless access points, determining a position of a mobile station based upon a wireless signal model, comparing the position of the mobile station and the wireless signal model with the positions associated with the plurality of wireless access points, and determining whether at least one wireless access point is misconfigured.
Abstract:
Techniques are provided in which a mobile station may determine a first round-trip time (RTT) for a first measurement related communication between the transceiver and a first network device, wherein the first RTT comprises a uniform delay of time applied during the first measurement related communication by the first network device; Determine a second RTT for a second measurement related communication between the transceiver and a second network device, wherein the second RTT comprises the uniform delay of time applied during the second measurement related communication by the second network device; and determine, at least in part, a position of the mobile station with regard to at least the first and second network devices based, at least in part, on the first RTT and the second RTT.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized to facilitate or otherwise support one or more processes or operations in connection with binning venues into categories based, at least in part, on signal propagation characteristics associated with such venues.
Abstract:
An example method for updating a wireless signal model includes: measuring a distance from a mobile station to each wireless access point, of multiple wireless access points, based upon a wireless signal model; calculating a position of the mobile station based upon the measured distance; determining a computed distance to each wireless access point based upon the calculated position of the mobile station; updating the wireless signal model based upon the measured and computed distances to each wireless access point; and determining whether the wireless signal model has converged.
Abstract:
Techniques and apparatus for controlling the transmit power of an uplink (UL) signal from a user terminal in a wireless communications system in an effort to achieve some target characteristic, such as a target carrier-to-interference (C/I) ratio, at an access point (AP) are provided. In this manner, such a user terminal may help avoid or compensate for imbalances in received radio frequency (RF) power between UL signals received from multiple user terminals by the AP. For example, the transmit power at each user terminal may be controlled in an effort to achieve a target post-processing C/I ratio of 28 dB per spatial stream in an effort to reduce large power imbalances and optimize throughput per user terminal. The user terminal and the AP may compose part of a multiple-input multiple-output (MIMO) communication system utilizing spatial-division multiple access (SDMA) techniques.
Abstract:
An example method for determining a processing time for wirelessly determining a position of a mobile station includes: measuring a round trip time delay to each of multiple wireless access points; estimating an initial processing time for each of the wireless access points; calculating the position of the mobile station based upon the measured round trip time delays and estimated processing times; and updating the initial processing time for each of the wireless access points based upon the calculated position of the mobile station.
Abstract:
The subject matter disclosed herein relates to utilizing location information, such as maps, in location determination based on Received Signal Strength Indication (RSSI) and Round-Trip Time (RTT) data. Weighting information can be determined from and/or provided in the location information. The weighting information associated with an area in which a mobile device is located can impact how RSSI and RTT data is weighted in a calculation of the mobile device's location.