摘要:
The various aspects configure a mobile computing device to efficiently identify, classify, model, prevent, and/or correct the conditions and/or behaviors occurring on the mobile computing device that are related to one or more peripheral devices connected to the mobile computing device and that often degrade the performance and/or power utilization levels of the mobile computing device over time. In the various aspects, the mobile computing device may obtain a classifier model that includes, tests, and/or evaluates various conditions, features, behaviors and corrective actions on the mobile computing device that are related to one or more peripheral devices connected to the mobile computing device. The mobile computing device may utilize the classifier model to quickly identify and correct undesirable behaviors occurring on the mobile computing device that are related to the one or more connected peripheral devices.
摘要:
Various embodiments include methods of evaluating device behaviors in a computing device and enabling white listing of particular behaviors. Various embodiments may include monitoring activities of a software application operating on the computing device, and generating a behavior vector information structure that characterizes a first monitored activity of the software application. The behavior vector information structure may be applied to a machine learning classifier model to generate analysis results. The analysis results may be used to classify the first monitored activity of the software application as one of benign, suspicious, and non-benign. A prompt may be displayed to the user that requests that the user select whether to whitelist the software application in response to classifying the first monitored activity of the software application as suspicious or non-benign. The first monitored activity may be added to a whitelist of device behaviors in response to receiving a user input.
摘要:
Methods and systems for classifying mobile device behavior include generating a full classifier model that includes a finite state machine suitable for conversion into boosted decision stumps and/or which describes all or many of the features relevant to determining whether a mobile device behavior is benign or contributing to the mobile device's degradation over time. A mobile device may receive the full classifier model along with sigmoid parameters and use the model to generate a full set of boosted decision stumps from which a more focused or lean classifier model is generated by culling the full set to a subset suitable for efficiently determining whether mobile device behavior are benign. Results of applying the focused or lean classifier model may be normalized using a sigmoid function, with the resulting normalized result used to determine whether the behavior is benign or non-benign.
摘要:
Methods, devices, systems, and non-transitory process-readable storage media for a computing device to use machine learning to dynamically configure an application and/or complex algorithms associated with the application. An aspect method performed by a processor of the computing device may include operations for performing an application that calls a library function associated with a complex algorithm, obtaining signals indicating user responses to performance of the application, determining whether a user tolerates the performance of the application based on the obtained signals indicating the user responses, adjusting a configuration of the application to improve a subsequent performance of the application in response to determining the user does not tolerate the performance of the application, and storing data indicating the user responses to the performance of the application and other external variables for use in subsequent evaluations of user inputs.
摘要:
A computing device may be configured to work in conjunction with another component (e.g., a server) to better determine whether a software application is benign or non-benign. This may be accomplished via the server performing static and/or dynamic analysis operations, generating a behavior information structure that describes or characterizes the range of correct or expected behaviors of the software application, and sending the behavior information structure to a computing device. The computing device may compare the received behavior information structure to a locally generated behavior information structure to determining whether the observed behavior of the software application differs or deviates from the expected behavior of the software application or whether the observed behavior is within the range of expected behaviors. The computing device may increase its level of security/scrutiny when the behavior information structure does not match the local behavior information structure.
摘要:
Methods and systems for classifying mobile device behavior include configuring a server use a large corpus of mobile device behaviors to generate a full classifier model that includes a finite state machine suitable for conversion into boosted decision stumps and/or which describes all or many of the features relevant to determining whether a mobile device behavior is benign or contributing to the mobile device's degradation over time. A mobile device may receive the full classifier model and use the model to generate a full set of boosted decision stumps from which a more focused or lean classifier model is generated by culling the full set to a subset suitable for efficiently determining whether mobile device behavior are benign. Boosted decision stumps may be culled by selecting all boosted decision stumps that depend upon a limited set of test conditions.
摘要:
A computing device processor may be configured with processor-executable instructions to implement methods of detecting and responding non-benign behaviors of the computing device. The processor may be configured to monitor device behaviors to collect behavior information, generate a behavior vector information structure based on the collected behavior information, apply the behavior vector information structure to a classifier model to generate analysis results, use the analysis results to classify a behavior of the device, use the analysis results to determine the features evaluated by the classifier model that contributed most to the classification of the behavior, and select the top “n” (e.g., 3) features that contributed most to the classification of the behavior. The computing device may display the selected features on an electronic display of the computing device.
摘要:
The various aspects provide a system and methods implemented on the system for generating a behavior model on a server that includes features specific to a mobile computing device and the device's current state/configuration. In the various aspects, the mobile computing device may send information identifying itself, its features, and its current state to the server. In response, the server may generate a device-specific lean classifier model for the mobile computing device based on the device's information and state and may send the device-specific lean classifier model to the device for use in detecting malicious behavior. The various aspects may enhance overall security and performance on the mobile computing device by leveraging the superior computing power and resources of the server to generate a device-specific lean classifier model that enables the device to monitor features that are actually present on the device for malicious behavior.
摘要:
Mobile computing devices may be equipped with hardware components configured to monitor key assets of the mobile device at a low level (e.g., firmware level, hardware level, etc.). The hardware component may also be configured to dynamically determine the key assets that are to be monitored in the mobile device, monitor the access or use of these key assets by monitoring data flows, transactions, or operations in a system data bus of the mobile device, and report suspicious activities to a comprehensive behavioral monitoring and analysis system of the mobile device. The comprehensive behavioral monitoring and analysis system may then use this information to quickly identify and respond to malicious or performance degrading activities of the mobile device.
摘要:
Methods and systems for classifying mobile device behavior include generating a full classifier model that includes a finite state machine suitable for conversion into boosted decision stumps and/or which describes all or many of the features relevant to determining whether a mobile device behavior is benign or contributing to the mobile device's degradation over time. A mobile device may receive the full classifier model along with sigmoid parameters and use the model to generate a full set of boosted decision stumps from which a more focused or lean classifier model is generated by culling the full set to a subset suitable for efficiently determining whether mobile device behavior are benign. Results of applying the focused or lean classifier model may be normalized using a sigmoid function, with the resulting normalized result used to determine whether the behavior is benign or non-benign.