Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for improving call setup performance. In certain aspects, a User Equipment (UE) or a network servicing the UE, may detect at least one of the occurrence or anticipated occurrence of circuit switched (CS) signaling by a user equipment (UE), wherein the CS signaling at least comprises signaling associated with a CS call setup procedure, suspend packet-switched (PS) signaling or processing of such PS signaling in order to avoid delaying circuit-switched (CS) signaling, at least until the PS signaling may not substantially effect CS domain activity. In an aspect, a progress of a CS call setup procedure may be monitored and the PS signaling or processing of such PS signaling may be resumed based on completion of a radio bearer setup step in the CS call setup procedure.
Abstract:
Methods, systems, and apparatuses for mobility management in wireless communications systems that provide both voice connection services and data services are disclosed. In some aspects, enhanced connectivity with wireless networks after a failure of voice connection services is provided. A counter may be utilized in connection with a combined registration procedure in which a device requests registration for both data services and voice connection services in the wireless network. The counter may track failed attempts to register for voice connection services when the request is accepted for data services. The counter may be reset in response to a deregistration event, such as a user input or a network command, allowing a full number of attempts for later registration with the wireless network.
Abstract:
This disclosure provides systems, methods, apparatuses and computer-readable medium for wireless communication. In some aspects, a user equipment (UE) may receive, from a first base station (BS) associated with a fifth generation New Radio (5G NR) radio access technology (RAT), a command of mobility from the 5G NR RAT to a second RAT. The UE may determine that the command of mobility is for voice fallback. The UE may transmit, to a second BS associated with the second RAT and based at least in part on determining that the command of mobility is for voice fallback, a radio resource control (RRC) connection request communication for attempting to communicatively connect with the second BS for voice fallback.
Abstract:
This disclosure provides systems, methods, apparatuses and computer-readable medium for wireless communication. In some aspects, a user equipment (UE) may receive, from a first base station (BS) associated with a fifth generation New Radio (5G NR) radio access technology (RAT), a command of mobility from the 5G NR RAT to a second RAT. The UE may determine that the command of mobility is for voice fallback. The UE may transmit, to a second BS associated with the second RAT and based at least in part on determining that the command of mobility is for voice fallback, a radio resource control (RRC) connection request communication for attempting to communicatively connect with the second BS for voice fallback.
Abstract:
This disclosure provides systems, methods, apparatuses and computer-readable medium for wireless communication. In some aspects, a user equipment (UE) may receive, from a first base station (BS) associated with a fifth generation New Radio (5G NR) radio access technology (RAT), a command of mobility from the 5G NR RAT to a second RAT. The UE may determine that the command of mobility is for voice fallback. The UE may transmit, to a second BS associated with the second RAT and based at least in part on determining that the command of mobility is for voice fallback, a radio resource control (RRC) connection request communication for attempting to communicatively connect with the second BS for voice fallback.
Abstract:
An access terminal pre-registers with a second access network via a first access network to ensure a quick handover in the future. Frequent pre-registration attempts are avoided by implementing a hysteresis timer that restricts when a pre-registration process can be initiated. The hysteresis timer is started when pre-registration is initiated by the access terminal. No new pre-registration attempts are permitted if the hysteresis timer has not expired. An abort condition can cause the hysteresis timer to be aborted early, and a new pre-registration can be initiated. Access points in the first access network may be grouped into one or more pre-registration zones. If the access terminal moves from a first access point to a second access point, a new pre-registration is skipped if the first and second access points have the same pre-registration zone or the second access point is aware of the pre-registration zone for the first access point.
Abstract:
Certain aspects of the present disclosure propose techniques for independently signaling features supported by a user equipment (UE) in different duplexing modes. The UE may be capable of communicating in frequency division duplexing (FDD) and time division duplexing (TDD) modes. The UE may obtain a FDD-specific feature group indicators (FGIs) set and a TDD-specific FGIs set, and signal at least one of the FDD-specific FGIs set or TDD-specific FGIs set. In addition, the UE may take one or more actions to reduce the likelihood of transitioning to a mode of operation that is different from its current mode of operation.
Abstract:
Disclosed are methods and apparatus for improving the performance of a user equipment handover during a data call. In one aspect, a source base station determines to handover user equipment (UE) to a target base station. The source base station first determines whether the UE is in a data call prior to the handover. The source base station then modifies one or more of connected mode discontinuous reception (CDRX) and semi-persistent scheduling (SPS) parameters with the UE based on determining to handover the UE and determining that the UE is in the data call.
Abstract:
Methods, systems, apparatuses and devices are described for managing a call during radio link failure. In one embodiment, radio link failure over a radio access technology may be detected during or after a call setup procedure. A public land mobile network and an equivalent public land mobile network may be selected. An initial search for cells of the radio access technology may be performed over the selected public land mobile network and the equivalent public land mobile network. The initial search may be performed once or twice based on a configurable parameter.
Abstract:
Methods, apparatus, and computer program products for managing mobility in a multi-radio device are provided. One example method generally includes detecting that a first channel is not usable for communicating via a first radio access technology (RAT); receiving a message to redirect from a second channel to the first channel; determining the first channel is in a set of one or more blocked channels not usable for the first RAT; and in response to the determination, taking one or more actions. Another example method generally includes detecting that a first channel is not usable for communicating via a first RAT and providing an indication to a network that a user equipment (UE) no longer supports the first channel.