Abstract:
Methods, systems, and devices for wireless communication are described for inter-RAT mobility from a first radio access technology (RAT) to a second RAT, including cases in which different RATs correspond to different generations of networks. Approaches described herein include providing a preemptive indication of inter-RAT mobility for one or more geographic areas such to a user equipment (UE). The UE can thus use a mobility procedure to transition from the first RAT to the second RAT that is supported in the UE's location without first attempting an unsupported mobility procedure, reducing transition latency.
Abstract:
Aspects disclosed herein facilitate security handling of 5GS to EPC reselection are disclosed herein. An example method at a UE includes transmitting a first TAU request, the first TAU request encoded using a first security context associated with a first RAT, the first TAU request being integrity protected using a first uplink count based on the first security context, and the first TAU request including a first set of information including an identifier mapped to a second RAT associated with the first network entity. The example method also includes transmitting a second TAU request, the second TAU request including the first set of information, the second TAU request being integrity protected using a second uplink count. The example method also includes communicating based on a mapped security context based on the first security context and at least one of the first uplink count or the second uplink count.
Abstract:
Methods, systems, apparatuses and devices are described for managing a call during radio link failure. In one embodiment, radio link failure over a radio access technology may be detected during or after a call setup procedure. A public land mobile network and an equivalent public land mobile network may be selected. An initial search for cells of the radio access technology may be performed over the selected public land mobile network and the equivalent public land mobile network. The initial search may be performed once or twice based on a configurable parameter.
Abstract:
A method is provided. The method may be performed by a UE. The method includes attempting to attach to or to perform a tracking area update in an EPS network to obtain voice services for a number of times. The method includes starting a modified timer based on a failure to attach to or to perform the tracking area update in an EPS network for the number of times and based on a configuration parameter. The modified timer may be modified based on a default timer. The method includes keeping an S1 mode enabled when starting the modified timer. The method includes attempting to obtain the voice services based on one or more access technologies other than EPS. The method includes attaching to or performing a tracking area update in the EPS network to obtain voice services based on the modified timer.
Abstract:
Methods and apparatus are provided for avoiding attempts by a UE to attach to a RAT network when that RAT network is unavailable. According to certain aspects, the UE may detect scenarios when the RAT network is unavailable and take preemptive action to prevent the UE from attempting to acquire service on that RAT. For example, the UE may effectively remove that RAT from a list of supported RATs by sending a UE capability message indicating that RAT is not supported, which may prevent network-initiated transitions of the UE to that RAT. The UE may also remove the unavailable RAT from an internal list of supported RATs, which may prevent UE-initiated transitions to that RAT.
Abstract:
Various methods for performing public land mobile network (PLMN) searches on a mobile communication device may include obtaining information about one or more radio access technologies (RATs) for which network coverage is allowed by a network operator of a home PLMN (HPLMN) of the mobile communication device, selecting one of the one or more allowed RATs, conducting a PLMN search on the selected RAT, and determining whether there are available PLMNs on the selected RAT based on the PLMN search. In some examples, the information about one or more RATs for which network coverage is allowed by the network operator may be stored in a universal subscriber identity module (USIM) on the mobile communication device. In such example, the information may be stored in one or more PLMN selector lists on the USIM.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may establish, using a first subscription of the UE, a first communication connection associated with a first service. The UE may establish, using a second subscription of the UE, a second communication connection associated with a second service. The UE may operate in a dual subscriber identity module (SIM) dual active (DSDA) mode based at least in part on establishing the first communication connection and establishing the second communication connection. The UE may perform an action to maintain concurrent services, including the first service and the second service, while operating in the DSDA mode. Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may detect that a first subscription, of a plurality of subscriptions associated with the UE, is associated with an active service on a first cellular network. The UE may search, for a second subscription of the plurality of subscriptions, for radio access technologies (RATs) and frequency bands that are compatible with a dual active mode of the UE. In some aspects, the UE may detect that the active service on the first cellular network has ended. Accordingly, the UE may search, for the second subscription, for RATs and frequency bands that are compatible with the dual active mode of the UE and for RATs and frequency bands that are incompatible with the dual active mode, before expiry of a timer associated with a power saving state. Numerous other aspects are described.
Abstract:
Aspects are provided which allow a UE to disable measurements of reference signals from 5G base stations which are inapplicable to EN-DC. The UE may receive a reference signal from a base station. The UE may identify a frequency range. The UE may determine whether to measure the reference signal based on whether the reference signal is within the identified frequency range. The UE may refrain from measuring the reference signal in response to the determination. The UE may also refrain from measuring the reference signal in response to a SIB received at the UE not including a ULI, or in response to a frequency associated with the reference signal not being in a list of supported bands for EN-DC. As a result, inter-RAT handovers from LTE base stations to 5G base stations are prevented, UE power consumption is thereby saved, and support for EN-DC is maintained.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be configured to include procedures to mitigate denial of service (DoS) attack by a rogue base station when the initial non-access stratum (NAS) messages between the UE and a mobility management entity (MME) is unprotected. UE may maintain a temporary forbidden network list, which resides outside a subscriber identity module (SIM), and update a forbidden network list, which resides on the SIM, only under certain conditions. For example, a visited network, from which the UE receives a reject message, may be added to the forbidden network list on the SIM only when a counter associated with the visited network is equal to a maximum counter value, which is configured by the UE.