Abstract:
The present disclosure describes various examples of a method, an apparatus, and a computer readable medium for multi-state discontinuous reception (DRX) in wireless communications. For example, one of the methods described may include identifying, by a user equipment (UE), at least two states in connected mode, determining, by the UE, one or more triggers for transitioning between the at least two states, and transitioning, by the UE, from a first state of the at least two states to a second state of the at least two states in response to a determination of the one or more triggers. In an aspect, the transitioning comprises transitioning between cross-slot scheduling and same-slot scheduling, or between a narrow bandwidth and a wide bandwidth, or between a larger periodicity and a smaller periodicity for monitoring.
Abstract:
Systems and methods for antenna selection in a wireless terminal with two radios are provided. Signals received using first and second antennas are demodulated by first and second modems according to first and second protocols. A receive path between the second antenna and the second modem can be controlled to receive signals according to the first protocol. A performance measure of demodulating, according to the first protocol, a signal received using the second antenna is determined. The performance measure may be determined using a mirror module in the second modem or using a search module in the first modem. The wireless terminal switches antennas so that the first modem demodulates a signal received using the second antenna, if the performance measure for using the second antenna is such that the switch would improve performance of the first modem.
Abstract:
In the examples described herein, a user equipment (UE) may identify multiple carriers configured for communications with a base station, and the UE may group the carriers into one or more preferred groups for synchronized scheduling at the base station. The preferred groups of carriers for synchronized scheduling may represent a recommendation that carriers within a preferred group are to be scheduled for communications with the base station on at least partially overlapping resources to maximize power savings at the UE. The UE may transmit an indication of the preferred groups of carriers to the base station, and the base station may identify an actual group of carriers for synchronized scheduling based on the indication received from the UE. The base station may then schedule communications with the UE based on the actual group of carriers.
Abstract:
Examples described herein relate to enhancing data communication performance in a wireless communication network including a first subscription associated with a first radio access technology (RAT) and a second subscription associated with a second RAT, where the wireless communication device uses a same radio frequency (RF) resource to communicate over both the first RAT and the second RAT. The first RAT is used, in part, for data operations while the second RAT is used, in part, for voice operations. During idle state voice operations, the RF resource is reallocated from performing data operations to performing idle state voice operations, causing interruptions in the data operations. The wireless communication device adjusts at least one or a duration and an occurrence of the idle state voice operations to reduce the impact on the data operations.
Abstract:
A method includes: receiving a first speech frame; identifying a first codec mode based at least in part on a Codec Mode Command (CMC) comprising the first speech frame; identifying a second codec mode based at least in part on a downlink (DL) Codec Mode Indication (DCMI) comprising the first speech frame; determining, based at least in part on a current uplink (UL) codec mode, to apply one of the first codec mode, the second codec mode, and a third codec mode having a higher bit rate than the first codec mode; and applying one of the first codec mode, the second codec mode, and the third codec mode. Apply the first codec mode when the RxLev and RXQual are determined not to exceed a predetermined threshold, and applying second or third codec modes otherwise.
Abstract:
Devices and methods are configured for resolving control channel transmission collision in a mobile device having first and second subscriptions (SUBs) when the first SUB is in an active voice call and the second SUB is in a held voice call. The devices and methods involve determining whether a control channel transmission of the first SUB would collide with a control channel transmission of the second SUB. In response to determining that the first SUB control channel transmission would collide with the second SUB control channel transmission, the devices and methods alternate the first SUB control channel transmission and the second SUB control channel transmission to avoid collision.
Abstract:
A method includes: receiving a first speech frame; identifying a first codec mode based at least in part on a Codec Mode Command (CMC) comprising the first speech frame; identifying a second codec mode based at least in part on a downlink (DL) Codec Mode Indication (DCMI) comprising the first speech frame; determining, based at least in part on a current uplink (UL) codec mode, to apply one of the first codec mode, the second codec mode, and a third codec mode having a higher bit rate than the first codec mode; and applying one of the first codec mode, the second codec mode, and the third codec mode.
Abstract:
Access terminals are adapted to blacklist one or more neighboring cells from acquisition attempts. For instance, an access terminal may receive a transmission including a list of neighboring cells to be monitored while connected to a particular serving cell. The access terminal may determine that a predefined number of consecutive acquisition attempts with a particular neighboring cell have failed. In response to failure of the predefined number of consecutive acquisition attempts, the access terminal can blacklist the neighboring cell from subsequent acquisition attempts for a predefined blacklisting period. Following the duration of the blacklisting period, the access terminal may conduct a subsequent acquisition attempt with the neighboring cell. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Access terminals are adapted to employ timing information for a Synchronization Channel (SCH) associated with a neighboring base station during a re-acquisition procedure after such timing information has been determined to be inaccurate, or potentially inaccurate. For instance, an access terminal can obtain timing information for a Synchronization Channel (SCH) associated with a neighboring base station, such as by means of a combined acquisition procedure. The access terminal may subsequently determine that the obtained timing information is, or appears to be, no longer synchronized with the base station. In response to such a determination, the access terminal can employ the obtained timing information to time the opening of a receive window for re-acquiring the base station. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Access terminals are adapted to blacklist one or more neighboring cells from acquisition attempts. For instance, an access terminal may receive a transmission including a list of neighboring cells to be monitored while connected to a particular serving cell. The access terminal may determine that a predefined number of consecutive acquisition attempts with a particular neighboring cell have failed. In response to failure of the predefined number of consecutive acquisition attempts, the access terminal can blacklist the neighboring cell from subsequent acquisition attempts for a predefined blacklisting period. Following the duration of the blacklisting period, the access terminal may conduct a subsequent acquisition attempt with the neighboring cell. Other aspects, embodiments, and features are also claimed and described.