Abstract:
This disclosure describes a device configured to generate a primitive visibility stream that indicates whether respective primitives of a set of primitives are visible when rendered and to generate, based on the primitive visibility stream, a draw call visibility stream that indicates whether respective draw calls for rendering the set of primitives include instructions for rendering visible primitives of the set of primitives. Based on the draw call visibility stream indicating that a respective draw call does not include instructions for rendering visible primitives, the device is further configured to drop the respective draw call. Based on the draw call visibility stream indicating that the respective draw call includes instructions for rendering visible primitives, the device is further configured to execute the respective draw call.
Abstract:
In an example, a method of transforming video data comprises determining, based on variable operational code, a plurality of control parameters for transforming the video data in a transform domain, wherein the operational code maps each of the plurality of control parameters to respective operational code fields, and performing transformation of the video data based on the determined control parameters.
Abstract:
Methods, systems, and devices are described for improving uplink communications of a machine type communication (MTC) device by relaying communications through a first device, such as a mobile device or user equipment (UE), to a second device, such as a base station or Evolved-NodeB (eNB). In an embodiment, a relay device may participate in a discovery process to discover an MTC device. The relay device may then receive data from the discovered MTC device, such as through a peer-to-peer link, and relay the data to a base station through a second communication link. In another embodiment, an MTC device may participate in a discovery process with a first device, such as a relay UE. The MTC device may then transmit data to the relay UE for relaying to a second device, such as a base station. In either case, the MTC device may receive data directly from the base station.
Abstract:
Systems and methods for interleaving video sub-blocks in video coding are described herein. In one aspect, an apparatus includes a memory and a video coder. The memory stores a first video block and a second video block. The first video block and the second video block include sub-blocks. The video coder processes a first sub-block of the first video block according to a first process and a second process, and processes a second sub-block of the first video block according to the first process and the second process after processing the first sub-block of the first video block according to the first process and the second process. Further, the video coder processes a first sub-block of the second video block according to the first process before processing the second sub-block of the first video block according to the first process.
Abstract:
Methods, systems, and devices are described for improving communications of a machine type communications (MTC) device. In a method of communication, a signal to interference noise ratio (SINR) of one or more resource blocks (RBs) of a target device may be estimated by, for example, an MTC device. The MTC device may then select one or more of the RBs of the target device to be in a resource pool based at least in part on the estimated SINR. In some embodiments, the MTC device may compare the estimated SINR of the one or more RBs of the target device to a threshold SINR and select one or more RBs with an SINR less than the threshold SINR to be in the resource pool. In some embodiments, the MTC device may randomly select a resource block from the resource pool and transmit on the selected resource block.
Abstract:
In an example, a method for rendering graphics data includes rendering pixels of a first bin of a plurality of bins, wherein the pixels of the first bin are associated with a first portion of an image, and rendering, to the first bin, one or more pixels that are located outside the first portion of the image and associated with a second, different bin of the plurality of bins. The method also includes rendering the one or more pixels associated with the second bin to the second bin, such that the one or more pixels are rendered to both the first bin and the second bin.
Abstract:
Methods, systems, and devices are described for improving uplink communications of machine type communication (MTC) devices. In some embodiments, an MTC device may perform a discovery operation on a first narrow frequency band, establish a first communication link with a discovered relay device on a second narrow frequency band, and transmit MTC data on the second narrow frequency band to the discovered relay device to be relayed to a third device on a second communication link on a broad frequency band. In another embodiment, a first device may participate in a discovery operation with a second device. The first device may establish a communication link with the second device on a first narrow frequency band and receive data from the second device on a second narrow frequency band. The first device may relay the data to a third device over a second communication link on a broad frequency band.
Abstract:
This disclosure describes a device configured to generate a primitive visibility stream that indicates whether respective primitives of a set of primitives are visible when rendered and to generate, based on the primitive visibility stream, a draw call visibility stream that indicates whether respective draw calls for rendering the set of primitives include instructions for rendering visible primitives of the set of primitives. Based on the draw call visibility stream indicating that a respective draw call does not include instructions for rendering visible primitives, the device is further configured to drop the respective draw call. Based on the draw call visibility stream indicating that the respective draw call includes instructions for rendering visible primitives, the device is further configured to execute the respective draw call.
Abstract:
In an example, a method for rendering graphics data includes rendering pixels of a first bin of a plurality of bins, wherein the pixels of the first bin are associated with a first portion of an image, and rendering, to the first bin, one or more pixels that are located outside the first portion of the image and associated with a second, different bin of the plurality of bins. The method also includes rendering the one or more pixels associated with the second bin to the second bin, such that the one or more pixels are rendered to both the first bin and the second bin.
Abstract:
Implementations include video image processing systems, methods, and apparatus for integrated video downscale in a video core. The downscaler computes and writes a display frame to an external memory. This frame may have the same resolution as a target display device (e.g., mobile device). The target display device then reads this display frame, rather than the original higher resolution frame. By enabling downscale during encoding/decoding, the device can conserve resources such as memory bandwidth, memory access, bus bandwidth, and power consumption associated with separately downscaling a frame of video data.