Abstract:
Systems and methods are disclosed for a wireless device to transmit or receive a channel busy time (CBT) to or from other devices in a wireless network. For transmitting, the wireless device may determine a CBT during which a wireless channel is to be occupied, generate a universal reservation signal (URS) indicating the CBT, and transmit on the wireless channel the URS to at least one other wireless device. For receiving, the wireless device may receive on a wireless channel a URS from a second wireless device, the URS configured to indicate the CBT. The wireless device may also refrain from attempting to transmit on the wireless channel during the CBT.
Abstract:
Techniques are provided for constructing or determining a training sequence as a part of transmission preamble to minimize (or at least reduce) a peak-to-average power ratio (PAPR) at a transmitting node. In one example, a long training field (LTF) sequence of a preamble is determined that combines a set of interpolating sequences with LTF tone values. The LTF tone values may cover at least a portion of bandwidth of a first size, with each of the LTF tone values repeated for different subcarriers. The phases of tones of the LTF sequence may be rotated per bandwidth of the first size and certain tones of the LTF sequence may have a stream of values at pilot locations. For example, the phases of tones of the LTF sequence may be rotated in an effort to reduce PAPR during a transmission of the LTF sequence.
Abstract:
Systems, methods, and devices for communicating in a wireless network are provided. In one aspect, a method for wireless communication is provided. The method includes inserting a plurality of scrambler seeds into a data unit comprising a plurality of data portions, each scrambler seed associated with a respective data portion of the plurality of data portions. The method includes scrambling each data portion at least in part based on the associated scrambler seed. The method includes transmitting the data unit. The data portions may comprise code words or at least one media access control protocol data unit. The scrambler seed may be inserted in reserved bits of the delimiter field. The scrambler seed may be inserted in a delimiter signature field of the delimiter field.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) transmissions in a High Efficiency WLAN (HEW) system. One example method generally includes generating a packet having a preamble portion and transmitting the packet. The preamble portion typically includes a long training field (LTF); a first signal (SIG) field subsequent to the LTF; one or more other LTFs located subsequent to the first SIG field; and at least one second SIG field, wherein all SIG fields in the preamble portion, other than the first SIG field, are subsequent to the one or more other LTFs. Another example method generally includes receiving, from an apparatus, a packet having a preamble portion comprising tone-interleaved LTFs; and performing frequency offset adjustment on the packet based on the tone-interleaved LTFs.
Abstract:
A communication device for enabling phase tracking is described. The communication device includes a processor and instructions stored in memory. The communication device generates a plurality of pilot symbols. The pilot symbols conform to a rank-deficient pilot mapping matrix. The communication device also transmits the plurality of pilot symbols.
Abstract:
Systems, methods, and devices for communicating long packets are described herein. In one aspect, an apparatus for wireless communication includes a receiver and a processor. The receiver wirelessly receives via wireless local area network a data unit comprising a plurality of training fields interposed between data symbols. The plurality of training fields includes a first training field followed by a second training field. The first training field includes a gain control sequence, and the second training field includes a channel estimation sequence. The processor decodes at least one data symbol based on the plurality of training fields. In another aspect, an apparatus for wireless communication includes a processor and a transmitter. The processor generates a data unit comprising a plurality of training fields inserted between data symbols, and the transmitter wirelessly transmits the data unit via wireless local area network.
Abstract:
A base station for communicating with multiple groups of wireless communication devices is described. The base station includes a processor and executable instructions stored in memory that is in electronic communication with the processor. The base station determines a number of wireless communication devices. The base station also splits the number of wireless communication devices into groups. The base station further determines a precoding matrix for each group. The base station additionally transmits a beamformed signal to each group using the precoding matrix for each group.
Abstract:
Systems, methods, and devices for detecting and managing the presence of bursty interference on a wireless communication system are disclosed. One aspect of the subject matter described in the disclosure provides a method of detecting the presence of bursty interference on a wireless network. The method includes receiving, at a wireless device, a message from a transmitting device. The method further includes determining whether the message includes errors caused by bursty interference. The method further includes suspending a channel tracking when bursty interference is detected. In an embodiment the method further includes reporting bursty interference to the transmitting device when bursty interference is detected.
Abstract:
Certain aspects of the present disclosure relate to techniques for constructing a long training field (LTF) sequence in a preamble to reduce a peak-to-average power ratio (PAPR) at a transmitter.
Abstract:
This disclosure provides systems, methods, and apparatus, including non-transitory computer-readable medium for tone mapping an error correction code for 1 MHz OFDM transmission. In one aspect, a wireless communications apparatus is provided. The wireless communications apparatus includes a tone mapper configured to tone map at least error correction codeword to data tones of an orthogonal frequency-division multiplexing (OFDM) symbol based on an error correction code tone mapping distance selected from the group consisting of 2, 3, and 4. The OFDM symbol has twenty four data tones, at least one pilot tone, a DC tone, and at least one guard tone. The wireless communications apparatus further includes a transmit module configured to transmit the at least one tone mapped error correction codeword using about a 1 MHz OFDM transmission mode.