Abstract:
An apparatus includes a first ground plane, a second ground plane, an antenna, and a balun coupled to the antenna. The balun is disposed between the first ground plane and the second ground plane.
Abstract:
An apparatus includes an impedance circuit and a plurality of inductors coupled to the impedance circuit. Each of the plurality of inductors is coupled in parallel to a corresponding switch of a plurality of switches.
Abstract:
A millimeter-wave radio frequency (RF) system, and method thereof for transferring multiple signals over a single transmission line connected between modules of a millimeter-wave RF system. The system comprises a single transmission line for connecting a first part of the RF system and a second part of the RF system, the single transmission line transfers a multiplexed signal between the first part and second part, wherein the multiplexed signal includes intermediate frequency (IF) signal, a local oscillator (LO) signal, a control signal, and a power signal; the first part includes a baseband module and a chip-to-line interface module for interfacing between the baseband module and the single transmission line; and the second part includes a RF module and a line-to-chip interface module for interfacing between the RF module and the single transmission line, wherein the first part and the second part are located away from each other.
Abstract:
A method for designing a coupling-function based millimeter wave electrical element. The method comprises computing a length of a first metal line and a second metal line; computing a first number of turns for the first metal line and a second number of turns for the second metal line; determining a width value of each of the first metal line and the second metal line; determining a spacing value between the first metal line and the second metal line; winding the first metal line on a first metal layer according to the first number of turns and winding the second metal line on the first metal layer and, in part, on a second metal layer according to the second number of turns, thereby resulting in a spiraled structure; and setting ports for the spiraled structure to form a complete design of the millimeter wave electrical element.
Abstract:
An apparatus includes a printed circuit board having a first surface and a second surface opposite the first surface. The apparatus includes a surface launcher of a dielectric resonator antenna (DRA). The surface launcher is coupled to the first surface of the printed circuit board. A metal structure is coupled to the first surface and configured to direct a portion of a wave of the DRA through the second surface.
Abstract:
The disclosure generally relates to a compact bypass and decoupling structure that can be used in a millimeter-wave radio frequency integrated circuit (RFIC). For example, according to various aspects, an RFIC incorporating the compact bypass and decoupling structure may comprise a grounded substrate, a mid-metal ground plane, a bypass capacitor disposed between the grounded substrate and the mid-metal ground plane, and a decoupling inductor disposed over the mid-metal ground plane. The bypass capacitor may close a current loop in the RFIC and the decoupling inductor may provide damping in a supply network associated with the RFIC. Furthermore, the decoupling conductor may have a self-resonance substantially close to an operating band associated with the RFIC to increase series isolation, introduce substrate losses that facilitate the damping in the supply network, and prevent high-Q resonances.
Abstract:
A device includes a first antenna and a second antenna. The first antenna may be configured to transmit or receive through an aperture provided by the device. The second antenna may include an array of a plurality of antenna elements configured to transmit or receive through the aperture. The plurality of antenna elements may overlap at least a portion of the first antenna.
Abstract:
A printed millimeter wave dipole antenna and techniques for designing such an antenna are disclosed. In one embodiment, the dipole antenna comprises: a signal wing and at least one ground wing for propagating signals in a millimeter wave band; and an unbalanced feeding structure directly coupled to the signal wing. The unbalanced feeding structure is boarded by a plurality of escorting vias to ensure equipotential grounds.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for autonomous receive (RX) detection. One example method for wireless communications generally includes powering down a portion of a receive path in a first module; detecting, in a second module comprising another portion of the receive path, that a radio frequency (RF) signal has been received by the second module while the portion of the receive path in the first module is powered down; and sending a control signal to power up the portion of the receive path in the first module, based on the detection.
Abstract:
The apparatus is a wake-up circuit including a first comparator coupled to an input signal and configured to compare the input signal to a first comparison value. The wake-up circuit includes a second comparator coupled to the input signal and configured to compare the input signal to a second comparison value. The wake-up circuit further includes an exclusive OR gate. A first input of the exclusive OR gate is coupled to an output of the first comparator. A second input of the exclusive OR gate is coupled to an output of the second comparator. The wake-up circuit also includes a tunable charge pump coupled to an output of the exclusive OR gate and configured to convert a signal from the exclusive OR gate to a DC value to wake up a circuit being monitored.