摘要:
A graphene-based field effect transistor includes source and drain electrodes that are self-aligned to a gate electrode. A stack of a seed layer and a dielectric metal oxide layer is deposited over a patterned graphene layer. A conductive material stack of a first metal portion and a second metal portion is formed above the dielectric metal oxide layer. The first metal portion is laterally etched employing the second metal portion, and exposed portions of the dielectric metal oxide layer are removed to form a gate structure in which the second metal portion overhangs the first metal portion. The seed layer is removed and the overhang is employed to shadow proximal regions around the gate structure during a directional deposition process to form source and drain electrodes that are self-aligned and minimally laterally spaced from edges of the gate electrode.
摘要:
A transistor structure is provided which includes a graphene layer located on an insulating layer, a first metal portion overlying a portion of the graphene layer, a second metal portion contacting and overhanging the first metal portion, a first electrode contacting a portion of the graphene layer and laterally offset from a first sidewall of the first metal portion by a lateral spacing, and a second electrode contacting another portion of the graphene layer and laterally offset from a second sidewall of the first metal portion by the lateral spacing.
摘要:
Graphene transistor devices and methods of their fabrication are disclosed. One such graphene transistor device includes source and drain electrodes and a gate structure including a dielectric sidewall spacer that is disposed between the source and drain electrodes. The device further includes a graphene layer that is adjacent to at least one of the source and drain electrodes, where an interface between the source/drain electrode(s) and the graphene layer maintains a consistent degree of electrical conductivity throughout the interface.
摘要:
A graphene-based field effect transistor includes source and drain electrodes that are self-aligned to a gate electrode. A stack of a seed layer and a dielectric metal oxide layer is deposited over a patterned graphene layer. A conductive material stack of a first metal portion and a second metal portion is formed above the dielectric metal oxide layer. The first metal portion is laterally etched employing the second metal portion, and exposed portions of the dielectric metal oxide layer are removed to form a gate structure in which the second metal portion overhangs the first metal portion. The seed layer is removed and the overhang is employed to shadow proximal regions around the gate structure during a directional deposition process to form source and drain electrodes that are self-aligned and minimally laterally spaced from edges of the gate electrode.
摘要:
Graphene transistor devices and methods of their fabrication are disclosed. In accordance with one method, a resist is deposited to pattern a gate structure area over a graphene channel on a substrate. In addition, gate dielectric material and gate electrode material are deposited over the graphene channel and the resist. Further, the resist and the electrode and dielectric materials that are disposed above the resist are lifted-off to form a gate structure including a gate electrode and a gate dielectric spacer and to expose portions of the graphene channel that are adjacent to the gate structure. Additionally, source and drain electrodes are formed over the exposed portions of the graphene channel.
摘要:
A method of forming a transistor structure is provided. The method includes forming a graphene layer on an insulating layer; forming a stack of a first metal portion and a second metal portion over the graphene layer, wherein sidewalls of the first metal portion are vertically coincident with sidewalls of the second metal portion; and laterally offsetting the sidewalls of the first metal portion relative to the sidewalls of the second metal portion by a lateral distance.
摘要:
A transistor structure is provided which includes a graphene layer located on an insulating layer, a first metal portion overlying a portion of the graphene layer, a second metal portion contacting and overhanging the first metal portion, a first electrode contacting a portion of the graphene layer and laterally offset from a first sidewall of the first metal portion by a lateral spacing, and a second electrode contacting another portion of the graphene layer and laterally offset from a second sidewall of the first metal portion by the lateral spacing.
摘要:
An electrochemical storage device including a conductive material and an electrochemical storage device material held together by a covalently crosslinked binder matrix. A method of forming an electrode for an electrochemical storage device, the method including the steps of: mixing electrochemical storage device material, conductive material, linear polymer, and crosslinker with one or more solvents, the resultant mixture forming an electrode slurry, crosslinking the linear polymer with the crosslinker to thereby create a covalently crosslinked polymer network of the polymer and crosslinker, the crosslinked polymer network physically or chemically binding together the electrochemical storage device material and the conductive material.
摘要:
A two-dimensional locating method of a motion platform based on a magnetic steel array involves the following steps: placing more than four linear Hall sensors at any different positions within one or more polar distances of the magnetic steel array on the surface of the motion platform in a motion system; determining a magnetic flux density distribution model according to the magnetic steel array; determining the mounting positions of the above-mentioned linear Hall sensors, which are converted into phases with respect to the mass center of the motion platform; recording the magnetic flux density measured values of the linear Hall sensors as the motion proceeds; solving the phases of the mass center of the motion platform in a plane, with the measured values being served as observed quantities and the magnetic flux density distribution model being served as a computation model; and determining the position of the mass center of the motion platform with respect to an initial phase according to the phase, so as to realize the planar location of the motion platform. The present invention provides a simple, fast and robust method for computing mass center positions for a motion system containing a magnetic steel array.
摘要:
Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.