摘要:
An apparatus is described which is capable of producing an image of a smelt bed of inorganic chemicals collected at the bottom of a kraft pulp recovery boiler. The image produced is free of interferences of fume particles and gaseous radiation which have obscured prior attempts to view hot surfaces under such environmental conditions. The apparatus includes an industrial closed circuit video camera fitted with an infrared imaging detector or vidicon tube. An objective lens obtains the image. An optical filter interposed between the lens and the vidicon is a key element of the invention and is selected to reject radiation less than about a micrometer to avoid fume interference. The filter is further selected to reject all but limited ranges of radiation to avoid gaseous species overlying the smelt bed which are strongly emitting and absorbing. As an example, a spectral filter centered at 1.68 micrometers with a band width of 0.07 micrometer is suitable for imaging a kraft recovery smelt bed.
摘要:
An apparatus is described which is capable of producing an image of a smelt bed of inorganic chemicals collected at the bottom of a kraft pulp recovery boiler. The image produced is free of interferences of fume particles and gaseous radiation which have obscured prior attempts to view hot surfaces under such environmental conditions. The apparatus includes an industrial closed circuit video camera fitted with an infrared imaging detector or vidicon tube. An objective lens obtains the image. An optical filter interposed between the lens and the vidicon is a key element of the invention and is selected to reject radiation less than about a micrometer to avoid fume interference. The filter is further selected to reject all but limited ranges of radiation to avoid gaseous species overlying the smelt bed which are strongly emitting and absorbing. As an example, a spectral filter centered at 1.68 micrometers with a band width of 0.07 micrometer is suitable for imaging a kraft recovery smelt bed.
摘要:
Techniques for hardware accelerated caret rendering are described in which a system based caret is emulated using hardware acceleration technology. The hardware accelerated caret can be rendered using dedicated graphics processing hardware to look and feel like a system caret. This can involve using pixel shaders to produce the hardware accelerated caret and a employing a back-up texture to remove the caret after it is drawn and cause the caret to blink. In addition, rendering of the caret can be coordinated with other animations and/or other presentations of a frame buffer to piggy back drawing of the caret onto other drawing operations. This can reduce the number of times the frame buffer is presented and therefore improve performance.
摘要:
Various embodiments provide techniques for partitioning high resolution images into sub-images for display. In at least some embodiments, the techniques can enable a device to display an image in its native resolution (e.g., the image capture resolution) even when the image exceeds a threshold image size for the device. In example implementations, techniques determine that a size of an image exceeds a threshold image size for a system. Further to some embodiments, the techniques can determine that the image is to be partitioned into multiple sub-images that can each be processed and reassembled to display the image. The sub-images can each be rendered by a graphics processing functionality (e.g., a graphics processing unit) and displayed on a display device to present a version of the image in its native resolution.
摘要:
Techniques for hardware accelerated caret rendering are described in which a system based caret is emulated using hardware acceleration technology. The hardware accelerated caret can be rendered using dedicated graphics processing hardware to look and feel like a system caret. This can involve using pixel shaders to produce the hardware accelerated caret and a employing a back-up texture to remove the caret after it is drawn and cause the caret to blink. In addition, rendering of the caret can be coordinated with other animations and/or other presentations of a frame buffer to piggy back drawing of the caret onto other drawing operations. This can reduce the number of times the frame buffer is presented and therefore improve performance.
摘要:
A video imaging and counting system for use in counting moving particles. A video camera (14) is used to monitor the interior of a boiler (12) for carryover particles (46) of burning fuel. A video signal produced by the camera is electronically filtered according to a software algorithm implemented by a microcomputer (116). The video signal is digitized and at least a portion of it is processed and filtered to eliminate the fixed background noise, and variations in illumination across each image. Hot particles appearing as streaks in the image are counted when adjacent time/spatially filtered data points exceeding a threshold level lie in a defined ranged of angular trajectories. The range conforms to the expected motion of a particle entrained in hot gas flow within the area of interest in the boiler. An enhanced image of the moving particles filtered by a similar algorithm and the particle count are displayed on a video monitor (22).
摘要:
Various embodiments provide techniques for partitioning high resolution images into sub-images for display. In at least some embodiments, the techniques can enable a device to display an image in its native resolution (e.g., the image capture resolution) even when the image exceeds a threshold image size for the device. In example implementations, techniques determine that a size of an image exceeds a threshold image size for a system. Further to some embodiments, the techniques can determine that the image is to be partitioned into multiple sub-images that can each be processed and reassembled to display the image. The sub-images can each be rendered by a graphics processing functionality (e.g., a graphics processing unit) and displayed on a display device to present a version of the image in its native resolution.
摘要:
Techniques for hardware accelerated caret rendering are described in which a system based caret is emulated using hardware acceleration technology. The hardware accelerated caret can be rendered using dedicated graphics processing hardware to look and feel like a system caret. This can involve using pixel shaders to produce the hardware accelerated caret and a employing a back-up texture to remove the caret after it is drawn and cause the caret to blink. In addition, rendering of the caret can be coordinated with other animations and/or other presentations of a frame buffer to piggy back drawing of the caret onto other drawing operations. This can reduce the number of times the frame buffer is presented and therefore improve performance.
摘要:
An imaging and temperature monitoring system (10) is disclosed for displaying an image of an environment (E), along with information regarding the temperature of select regions (R) within the environment. The system includes a sensor head (12) equipped with a video imager (26) for producing a video image of the environment. The sensor head also includes a pyrometer (22) mounted on a computer-controlled translation stage (24), which allows the pyrometer to directly collect temperature information from the various regions. The combined imaging and temperature monitoring functions are advantageously achieved without tradeoffs in the performance of either function.
摘要:
A temperature-imaging system for generating an absolute temperature value for a point of interest on a monitored surface is disclosed. The system includes a camera and a temperature analyzer. The camera gathers video image data related to surface intensity and reference temperature data related to the absolute temperature at a reference point on the surface. The camera is configured so that the reference point is a fixed known point in the surface intensity image that moves with the movement of the camera. Thus, the reference temperature to reference point relationship is fixed. In operation, a video image and the reference temperature data are passed to the temperature analyzer. The temperature analyzer determines the absolute-temperature at a preselected point of interest on the surface. The temperature analyzer identifies the portion of the video image corresponding to the point of interest, and identifies the portion of the video image related to the reference point. The temperature analyzer generates an absolute temperature value for the point of interest by analyzing the reference temperature data, and the video image intensities related to the reference point and the point of interest. Because of the fixed relationship between the reference temperature data and the reference point in the video image, the system is always well calibrated and provides accurate absolute temperature outputs.