Abstract:
The present invention related to a saccharide-based cholera toxin detection sensor for detection of Vibrio cholerae and its use. More specifically, the present invention relates to a carbohydrate chip for detection of Vibrio cholerae, a method for detecting Vibrio cholerae using the same, and a method for preparing the same, where the carbohydrate chip comprises GM1 pentasaccharide, GM2 tetrasaccharide, asialo GM1 tetrasaccharide, GM3 trisaccharide, galactose-β 1,3-N-acetylgalactosamine, lactose, and sialic acid that are immobilized on the surface of a solid substrate.
Abstract:
The present invention relates to a composition for oral application and a method for preparing the same, more particularly, to a composition for oral application comprising a complex of specific Lewis base and specific Lewis acid, and a method for preparing the same. The composition for oral application of the present invention has excellent durability, body stability and coatibility, and thus, can effectively treat dentin hypersensitivity, and when applied before dentin hypersensitivity occurs, can prevent dentin hypersensitivity.
Abstract:
The present invention relates to a carbonic anhydrase, a nucleic acid molecule encoding the carbonic anhydrase, a recombinant vector including the nucleic acid molecule, a host cell transformed with the recombinant vector, and a method of preparing the carbonic anhydrase using the host cell. The carbonic anhydrase of the present invention has an excellent stability at high temperature to exhibit a carbon dioxide capturing activity even at high temperature, thereby being applied to a carbon dioxide capturing process performed at high temperature with many advantages in view of economic aspect due to mass-production of expression system.
Abstract:
The present invention relates to recombinant mussel adhesive protein wherein a DOPA residue is in vivo incorporated instead of a tyrosine residue, and a method for producing the same. More specifically, the present invention relates to recombinant mussel adhesive protein wherein a DOPA residue is incorporated instead of a tyrosine residue, and a method for producing the same, and a transformant for producing the recombinant mussel adhesive protein.
Abstract:
The present disclosure relates to a novel stem cell carrier and a method for producing the same and provides a method for producing a stem cell carrier including a step of contacting stem cells with a coacervate formed by mixing an anionic polymer with a mussel adhesive protein or a mutant thereof. The present disclosure relates to a novel stem cell therapeutic agent platform of delivering cells in a encapsulated state by forming an adhesive cell carrier using crosslinked coacervate. The cell carrier of the present disclosure can maintain the ability to differentiate stem cells as well as biocompatibility and can survive without losing cell adhesion even under oxygen-deficient conditions. In addition, the cell carrier of the present disclosure has an excellent regenerative effect by applying such to biological tissues in which vascular regeneration is not easy, by inducing a metabolic reaction triggered by the hypoxic environment, in particular, neovascularization.
Abstract:
Provided are a recombinant polypeptide in which a small leucine-rich proteoglycan mimetic sequence is attached to a terminal of a mussel adhesive protein, a composition for wound healing including the same, a bioadhesive material, and a preparation method thereof. According to the present disclosure, the recombinant polypeptide in which the small leucine-rich proteoglycan mimetic sequence is attached to the terminal of the mussel adhesive protein has an excellent epidermal regeneration effect in which the wound site is uniformly restored by promoting rapid wound healing at the wound site when being applied to the wound site and inducing formation of collagens which are arranged and concentrated at the wound site, and thus can be usefully used as various drugs, cosmetics, and quasi-drugs.
Abstract:
The present invention relates to a fusion protein comprising a mussel adhesive protein and a silica-binding peptide linked to the mussel adhesive protein, a silica nanoparticle a silica connected to the fusion protein, a fusion protein-silica nanoparticle complex comprising the silica nanoparticle having bioactivity and adhesiveness for cell proliferation and accelerating the differentiation, a surface coating composition including the complex, its use, and a method of coating a surface using the surface coating composition.
Abstract:
The present invention relates to technology of immobilizing or coating various functional bioactive substances on various surfaces without physical chemical treatment using mussel adhesive protein. More specifically, the present invention relates to a functional scaffold for tissue engineering comprising artificial extracellular matrix, manufactured by coating various functional bioactive substances on the surface of nanofiber and metal scaffold using mussel adhesive protein, and a method of manufacturing the same.