Abstract:
A charged particle beam writing apparatus according to an embodiment starts a wiring operation when the sum of the amount of shot data stored in a buffer memory of a transfer control calculator, the amount of shot data being transferred by a transfer unit, and the amount of shot data stored in a buffer memory of a deflection control circuit reaches the amount of data for one stripe region.
Abstract:
Charged particle beam writing apparatus includes a first generation unit to generate a smallest deflection region layer in three or more deflection region layers each having deflection regions of a size different from those of other deflection region layers, for each of a plurality of figure types variably shapable using first and second shaping apertures, an assignment unit to assign each of a plurality of shot figure patterns to deflection regions of the smallest deflection region layer of a corresponding one of the plurality of figure types, a correction unit to correct, by shifting the position of each smallest deflection region layer, according to a variable shaping position of each figure type, and a writing unit to write each of the plurality of shot figure patterns on a target object, in a state where the position of each smallest deflection region layer has been corrected for each figure type.
Abstract:
A beam writing apparatus includes a unit to obtain a specific value by calculating an integer by dividing a total irradiation time by a multiplied value of a region number and a repeating times number, and by multiplying the integer by the repeating times number, to add the repeating times number to the specific value when a region is in the multiple writing unit regions and is not a specific region and when a region number of the multiple writing unit region, defined excluding the specific region, is below or equal to a value obtained by dividing the total irradiation time by the multiplied value of the region number and the repeating times number, to obtain a first remainder, and dividing the first remainder by the repeating times number, and to treat an added value of the repeating times number and the specific value, as a total irradiation time.
Abstract:
A charged particle beam writing apparatus includes a buffer memory including a memory region capable of contemporarily storing writing data for data processing regions, wherein writing data including data files is temporarily stored for each of the data processing regions, a dividing unit to divide the memory region of the buffer memory into a first region being large and a second region being small, a specifying unit to specify the memory region such that a data file being large is preferentially stored in the first region and a data file being small is stored at least in the second region, concerning the data files for each of the data processing regions included in the writing data, and a data processing unit to read data files corresponding to each of the data processing regions from the buffer memory, and to perform data processing using the read data files.
Abstract:
A apparatus according to an embodiment includes a unit to generate first blocks in a writing region in which at least one of writing groups respectively using different base doses is to be written, a unit to generate second blocks for proximity effect correction, in the each of the regions of the groups, a unit to calculate an area density in each of the first blocks, a unit to perform a weighting calculation on the area density for each of the first blocks by using a base dose of a corresponding group, a unit to calculate a dose coefficient for proximity effect correction, for each of the second blocks, by using a corresponding weighted area density, and a unit to calculate a dose by using the base dose of the each of the groups and the dose coefficient of the each of the second blocks.
Abstract:
A multi charged particle beam writing apparatus includes a maximum irradiation time acquisition processing circuitry to acquire, for each shot of multi-beams, a maximum irradiation time of irradiation time of each of the multi-beams, a unit region writing time calculation processing circuitry to calculate, using the maximum irradiation time for each shot, a unit region writing time by totalizing the maximum irradiation time of each shot of a plurality of times of shots of the multi-beams which irradiate a unit region concerned during stage moving, for each unit region of a plurality of unit regions obtained by dividing a writing region of a target object, a stage speed calculation processing circuitry to calculate speed of the stage for each unit region so that the stage speed becomes variable, by using the unit region writing time and a stage control processing circuitry to variably control the stage speed.
Abstract:
A charged particle beam writing apparatus includes a unit to calculate a gradient of a convolution amount that is calculated from a convolution operation between an area density and a distribution function, a unit to calculate a small influence radius phenomenon dose correction coefficient that corrects for dimension variation due to a phenomenon whose influence radius is on an order of microns or less, by using the convolution amount and the gradient, a unit to calculate a proximity effect dose correction coefficient that corrects for dimension variation due to a proximity effect, by using a first function depending on the small influence radius phenomenon dose correction coefficient, a unit to calculate a dose by using the proximity effect dose correction coefficient and the small influence radius phenomenon dose correction coefficient, and a unit to write a figure pattern concerned on a target object, based on the dose.
Abstract:
A charged particle beam writing apparatus includes first and second transmission units to perform first and second transmission processing, where, in the first transmission processing, while one of the units performs data transmission processing, the other unit inputs processing data for N processing regions more than pre-set, data-converted, n processing regions, and while one of the units performs data input processing, the other transmits processing data for (N-n) processing regions in order, and in the second transmission processing, processing data for remaining n processing regions are transmitted in order after the first transmission processing, where one of the units starts inputting the processing data while the other performs the first transmission processing, and does not input processing data for a new processing region after starting the second transmission processing.
Abstract:
A charged particle beam writing apparatus includes a unit to calculate a gradient of a convolution amount that is calculated from a convolution operation between an area density and a distribution function, a unit to calculate a small influence radius phenomenon dose correction coefficient that corrects for dimension variation due to a phenomenon whose influence radius is on an order of microns or less, by using the convolution amount and the gradient, a unit to calculate a proximity effect dose correction coefficient that corrects for dimension variation due to a proximity effect, by using a first function depending on the small influence radius phenomenon dose correction coefficient, a unit to calculate a dose by using the proximity effect dose correction coefficient and the small influence radius phenomenon dose correction coefficient, and a unit to write a figure pattern concerned on a target object, based on the dose.
Abstract:
In one embodiment, a first storage storing writing data, a second storage storing correction data for correcting an error in a writing position due to factors including bending of the substrate, a cell data allocator virtually dividing a writing region of the substrate into blocks, and allocating a cell to the blocks in consideration of the correction data, a plurality of bitmap data generators virtually dividing the blocks into meshes, calculating an irradiation amount per mesh region, and generating bitmap data which assigns the irradiation amount to each mesh region, and a shot data generator generating shot data that defines an irradiation time for each beam. The cell data allocator virtually divides the writing region by division lines in a direction different from a writing forward direction to generate a plurality of division regions. The plurality of bitmap data generators generate pieces of bitmap data of the different division regions.