摘要:
A three-dimensional object detection device has an image capturing unit, an object detection unit, first and second edge intensity calculation units, a day/night assessment unit and a controller. The day/night assessment unit assess whether it is currently daytime or nighttime when detecting a three-dimensional object based on the captured images. Upon assesses it is daytime, edges of a subject are extracted from a first edge extraction area, including a horizon reference area, and a threshold value for detecting the three-dimensional object is set based on the intensity of the edges in the first edge extraction area. Upon assesses it is nighttime, the edges of a subject are extracted from a second edge extraction area, including a road edge reference area, and a threshold value for detecting the three-dimensional object is set based on the intensity of the edges that are extracted from the second edge extraction area.
摘要:
An in-vehicle image recognizer effectively detects a moving object from an image even when a lens has grime. In a detection sensitivity adjustor (50) which adjusts detection sensitivity to be increased according to a white turbidity level (U), the detection sensitivity of a vehicle detector (70) (image recognition application execution unit), which detects the other vehicle (6) (moving object) existing in the surrounding area of a vehicle (5) with a predetermined detection sensitivity from the image obtained by an imaging unit (10) disposed in the vehicle (5) to observe the surrounding area of the vehicle (5) through a lens (12) and convert the light signal of the observed surrounding area of the vehicle (5) into an image signal, is corrected based on the attachment level M of the attached matter such as dirt or water drops to the lens (12), which is calculated by an attachment level calculator (26).
摘要:
An in-vehicle surrounding environment recognition device includes: a photographic unit that photographs a road surface around a vehicle and acquires a photographic image; an application execution unit that recognizes another vehicle on the basis of the photographic image, and detects a relative speed of the other vehicle with respect to the vehicle; a reflection determination unit that, on the basis of the photographic image, determines upon presence or absence of a reflection of a background object from the road surface; a warning control unit that controls output of a warning signal on the basis of the result of recognition of the other vehicle; and a warning prevention adjustment unit that suppresses output of the warning signal on the basis of the relative speed of the other vehicle, if it has been determined that there is the reflection of the background object from the road surface.
摘要:
An on-board device, that outputs a control signal to a cleaning control unit that controls accumulation removing units used to remove accumulations settled on a photographic lens in an on-board camera by adopting a plurality of methods, includes: an accumulation detection unit that detects an accumulation settled on the photographic lens from a photographic image output from the on-board camera when a vehicle speed input thereto is equal to or higher than a predetermined vehicle speed; a selection unit that selects an accumulation removing unit adopting a first method among the accumulation removing units adopting the plurality of methods; and a removal decision unit that makes a decision, based upon the photographic image, as to whether or not the accumulation has been removed from the photographic lens through a removal operation performed by the accumulation removing unit adopting the first method, which has been selected by the selection unit, wherein: if the removal decision unit decides that the accumulation has not been removed from the photographic lens, the selection unit selects an accumulation removing unit adopting a second method, different from the accumulation removing unit adopting the first method, based upon a number of times that the removal operation has been performed by engaging the accumulation removing unit adopting the first method.
摘要:
A three-dimensional object detection has an image capturing device, an image conversion unit, a three-dimensional object detection unit, a three-dimensional object assessment unit, first and second foreign matter detection units and a controller. The image capturing device captures images rearward of a vehicle. The three-dimensional object detection unit detects three-dimensional objects based on image information. The three-dimensional object assessment unit assesses whether or not a detected three-dimensional object is another vehicle. The foreign matter detection units detect whether or not foreign matter has adhered to a lens based on the change over time in luminance values for each predetermined pixel of the image capturing element and the change over time in the difference between an evaluation value and a reference value. The controller outputs control commands to the other means to suppress the assessment of foreign matter as another vehicle when foreign matter has been detected.
摘要:
A three-dimensional object detection device has an image capturing unit, an object detection unit, a nighttime assessment unit, a luminance detection unit, a luminance peak detection unit and a controller. The image capturing unit captures images rearward of a vehicle. The object detection unit detects a presence of an object from the captured images. The nighttime assessment unit assesses if nighttime has fallen. The luminance detection unit detects a luminance of image areas from the captured image. The luminance peak detection unit detects a peak in the luminance having a luminance gradient that is greater than or equal to a predetermined reference value from among the detected peaks in the luminance as a target luminance peak. The controller controls detection of the object in an image area in which the target luminance peak is detected when an assessment has been made that nighttime has fallen by the nighttime assessment unit.
摘要:
An in-vehicle image recognizer effectively detects a moving object from an image even when a lens has grime. In a detection sensitivity adjustor (50) which adjusts detection sensitivity to be increased according to a white turbidity level (U), the detection sensitivity of a vehicle detector (70) (image recognition application execution unit), which detects the other vehicle (6) (moving object) existing in the surrounding area of a vehicle (5) with a predetermined detection sensitivity from the image obtained by an imaging unit (10) disposed in the vehicle (5) to observe the surrounding area of the vehicle (5) through a lens (12) and convert the light signal of the observed surrounding area of the vehicle (5) into an image signal, is corrected based on the attachment level M of the attached matter such as dirt or water drops to the lens (12), which is calculated by an attachment level calculator (26).
摘要:
A water droplet detection device has an image capturing unit and a water droplet detection unit. The image capturing unit has a photographic optical system that an area captures an image of a predetermined area. The water droplet detection unit sets an arbitrary attention point in the captured image, a plurality of first reference points inside an imaginary circle of a predetermined radius having the attention point as a center the imaginary circle, and a plurality of second reference points corresponding to the first reference points outside the imaginary circle. The water droplet detection unit detects edge information between the first reference points and second reference points, and assesses a circularity strength of the edge information to detect a water droplet attached to the photographic optical system. The water droplet detection device can be used with an image conversion unit to form a three-dimensional object detection device.
摘要:
A camera device includes image capturing device, a lens cleaning device, an adhesion state assessment unit and a controller. The image capturing device is installed on a vehicle and has a lens for forming an image of the vehicle surroundings. The lens cleaning device cleans the lens by spraying a cleaning fluid on the lens in accordance with a predetermined lens cleaning step, in which at least a supply time for supplying cleaning fluid to the lens surface is predetermined. The adhesion state assessment unit is programmed to assess an adhesion state of contamination from a distribution of pixels corresponding to foreign matter adhered to the lens based on a captured image. The controller is programmed to extend the time until a time to start supplying the cleaning fluid in the lens cleaning step as the number of pixels corresponding to foreign matter adhered to the lens increases.
摘要:
A parking frame drawn on a road surface is reliably detected. An imager (10) installed on a vehicle (1) captures an image (I) including at least a road surface around the vehicle (1). A candidate white-line area detector (30) detects, from the captured image (I), a candidate white-line area which is possibly a part of a parking frame. A parking-frame-similitude calculator (40) calculates the brightness distribution of the detected candidate white-line area and the surroundings of boundary points of a road surface. When the brightness distribution satisfies a certain condition, the parking-frame similitude or the degree to which the candidate white-line area forms a parking frame, is determined to be low. When a parking-frame similitude of the candidate white-line area forming a parking frame is detected in the image (I) by a parking-frame detector (60), the credibility (U) for the detected parking frame is set low.