摘要:
A method for forming optical devices. The method includes providing a gallium nitride substrate member having a crystalline surface region and a backside region. The method also includes subjecting the backside region to a laser scribing process to form a plurality of scribe regions on the backside region and forming a metallization material overlying the backside region including the plurality of scribe regions. The method removes at least one optical device using at least one of the scribe regions.
摘要:
A method for forming optical devices. The method includes providing a gallium nitride substrate member having a crystalline surface region and a backside region. The method also includes subjecting the backside region to a laser scribing process to form a plurality of scribe regions on the backside region and forming a metallization material overlying the backside region including the plurality of scribe regions. The method removes at least one optical device using at least one of the scribe regions.
摘要:
An optical device includes a gallium nitride substrate member having an m-plane nonpolar crystalline surface region characterized by an orientation of about −1 degree towards (000-1) and less than about +/−0.3 degrees towards (11-20). The device also has a laser stripe region formed overlying a portion of the m-plane nonpolar crystalline orientation surface region. In a preferred embodiment, the laser stripe region is characterized by a cavity orientation that is substantially parallel to the c-direction, the laser stripe region having a first end and a second end. The device includes a first cleaved c-face facet, which is coated, provided on the first end of the laser stripe region. The device also has a second cleaved c-face facet, which is exposed, provided on the second end of the laser stripe region.
摘要:
An optical device capable of emitting light having a wavelength ranging from about 490 to about 580 nanometers has a gallium nitride substrate with a semipolar crystalline surface region characterized by an orientation of greater than 3 degrees from (11-22) towards (0001) but less than about 50 degrees. A laser stripe formed on the substrate has a cavity orientation substantially parallel to the m-direction.
摘要:
An optical device includes a gallium nitride substrate member having an m-plane nonpolar crystalline surface region characterized by an orientation of about −2 degrees to about 2 degrees towards (000-1) and less than about 0.5 degrees towards (11-20). The device also has a laser stripe region formed overlying a portion of the m-plane nonpolar crystalline orientation surface region. A first cleaved c-face facet is provided on one end of the laser stripe region, and a second cleaved c-face facet is provided on the other end of the laser stripe region.
摘要:
An optical device includes a gallium nitride substrate member having an m-plane nonpolar crystalline surface region characterized by an orientation of about −2 degrees to about 2 degrees towards (000-1) and less than about 0.5 degrees towards (11-20). The device also has a laser stripe region formed overlying a portion of the m-plane nonpolar crystalline orientation surface region. A first cleaved c-face facet is provided on one end of the laser stripe region, and a second cleaved c-face facet is provided on the other end of the laser stripe region.
摘要:
A method for forming optical devices includes providing a gallium nitride substrate having a crystalline surface region and a backside region. The backside is subjected to a laser scribing process to form scribe regions. Metal contacts overly the scribe regions.
摘要:
A method for forming optical devices includes providing a gallium nitride substrate having a crystalline surface region and a backside region. The backside is subjected to a laser scribing process to form scribe regions. Metal contacts overly the scribe regions.
摘要:
An optical device having a structured active region configured for one or more selected wavelengths of light emissions and formed on an off-cut m-plane gallium and nitrogen containing substrate.