Abstract:
An automaton hardware engine employs a transition table organized into 2n rows, where each row comprises a plurality of n-bit storage locations, and where each storage location can store at most one n-bit entry value. Each row corresponds to an automaton state. In one example, at least two NFAs are encoded into the table. The first NFA is indexed into the rows of the transition table in a first way, and the second NFA is indexed in to the rows of the transition table in a second way. Due to this indexing, all rows are usable to store entry values that point to other rows.
Abstract:
An NFA (Non-deterministic Finite Automaton) circuit includes a hardware byte characterizer, a first matching circuit (performs a TCAM match function), a second matching circuit (performs a wide match function), a multiplexer that outputs a selected output from either the first or second matching circuits, and a storage device. N data values stored in first storage locations of the storage device are supplied to the first matching circuit as an N-bit mask value and are simultaneously supplied to the second matching circuit as N bits of an N+O-bit mask value. O data values stored in second storage locations of the storage device are supplied to the first matching circuit as the O-bit match value and are simultaneously supplied to the second matching circuit as O bits of the N+O-bit mask value. P data values stored in third storage locations are supplied onto the select inputs of the multiplexer.
Abstract:
Within a networking device, packet portions from multiple PDRSDs (Packet Data Receiving and Splitting Devices) are loaded into a single memory, so that the packet portions can later be processed by a processing device. Rather than the PDRSDs managing and handling the storing of packet portions into the memory, a packet engine is provided. A device interacting with the packet engine can use a PPI (Packet Portion Identifier) Addressing Mode (PAM) in communicating with the packet engine and in instructing the packet engine to store packet portions. Alternatively, the device can use a Linear Addressing Mode (LAM) to communicate with the packet engine. A PAM/LAM selection code field in a bus transaction value sent to the packet engine indicates whether PAM or LAM will be used.
Abstract:
In response to receiving a novel “Return Available PPI Credits” command from a credit-aware device, a packet engine sends a “Credit To Be Returned” (CTBR) value it maintains for that device back to the credit-aware device, and zeroes out its stored CTBR value. The credit-aware device adds the credits returned to a “Credits Available” value it maintains. The credit-aware device uses the “Credits Available” value to determine whether it can issue a PPI allocation request. The “Return Available PPI Credits” command does not result in any PPI allocation or de-allocation. In another novel aspect, the credit-aware device is permitted to issue one PPI allocation request to the packet engine when its recorded “Credits Available” value is zero or negative. If the PPI allocation request cannot be granted, then it is buffered in the packet engine, and is resubmitted within the packet engine, until the packet engine makes the PPI allocation.
Abstract:
A network flow processor integrated circuit includes a plurality of processors, a plurality of multi-threaded transactional memories (MTMs), and a configurable mesh posted transaction data bus. The configurable mesh posted transaction data bus includes a configurable command mesh and a configurable data mesh. Each of these configurable meshes includes crossbar switches and interconnecting links. A command bus transaction value issued by a processor can pass across the command mesh to an MTM. The command bus transaction bus value includes a reference value. The MTM uses the reference value to pull data across the configurable data mesh into the MTM. The MTM then uses the data to carry out the commanded transactional memory operation. Multiple such commands can pass across the posted transaction bus across different parts of the integrated circuit at the same time, and a single MTM can be carrying out multiple such operations at the same time.
Abstract:
A method for supporting in-flight packet processing is provided. Packet processing devices (microengines) can send a request for packet processing to a packet engine before a packet comes in. The request offers a twofold benefit. First, the microengines add themselves to a work queue to request for processing. Once the packet becomes available, the header portion is automatically provided to the corresponding microengine for packet processing. Only one bus transaction is involved in order for the microengines to start packet processing. Second, the microengines can process packets before the entire packet is written into the memory. This is especially useful for large sized packets because the packets do not have to be written into the memory completely when processed by the microengines.
Abstract:
Within a networking device, packet portions from multiple PDRSDs (Packet Data Receiving and Splitting Devices) are loaded into a single memory, so that the packet portions can later be processed by a processing device. Rather than the PDRSDs managing and handling the storing of packet portions into the memory, a packet engine is provided. A device interacting with the packet engine can use a PPI (Packet Portion Identifier) Addressing Mode (PAM) in communicating with the packet engine and in instructing the packet engine to store packet portions. Alternatively, the device can use a Linear Addressing Mode (LAM) to communicate with the packet engine. A PAM/LAM selection code field in a bus transaction value sent to the packet engine indicates whether PAM or LAM will be used.
Abstract:
Circuitry to provide in-order packet delivery. A packet descriptor including a sequence number is received. It is determined in which of three ranges the sequence number resides. Depending, at least in part, on the range in which the sequence number resides it is determined if the packet descriptor is to be communicated to a scheduler which causes an associated packet to be transmitted. If the sequence number resides in a first “flush” range, all associated packet descriptors are output. If the sequence number resides in a second “send” range, only the received packet descriptor is output. If the sequence number resides in a third “store and reorder” range and the sequence number is the next in-order sequence number the packet descriptor is output; if the sequence number is not the next in-order sequence number the packet descriptor is stored in a buffer and a corresponding valid bit is set.
Abstract:
An automaton hardware engine employs a transition table organized into 2n rows, where each row comprises a plurality of n-bit storage locations, and where each storage location can store at most one n-bit entry value. Each row corresponds to an automaton state. In one example, at least two NFAs are encoded into the table. The first NFA is indexed into the rows of the transition table in a first way, and the second NFA is indexed in to the rows of the transition table in a second way. Due to this indexing, all rows are usable to store entry values that point to other rows.
Abstract:
An automaton hardware engine employs a transition table organized into 2n rows, where each row comprises a plurality of n-bit storage locations, and where each storage location can store at most one n-bit entry value. Each row corresponds to an automaton state. In one example, at least two NFAs are encoded into the table. The first NFA is indexed into the rows of the transition table in a first way, and the second NFA is indexed in to the rows of the transition table in a second way. Due to this indexing, all rows are usable to store entry values that point to other rows.