Abstract:
Embodiments of a device and method are disclosed. In an embodiment, a network interface device is disclosed. The device includes a network interface configured to provide an interface to a network, a functional component interface configured to provide an interface to a functional component, and distributed test logic located in a path between the network interface and the functional component interface and configured to manage test information related to testing of the functional component and to communicate test information between the network interface and the distributed test logic and between the functional component interface and the distributed test logic.
Abstract:
As consistent with one or more embodiments, electronic circuitry is characterized to provide an indication of susceptibility of the circuitry to error. As consistent with one or more embodiments, bits corresponding to a circuit component of a circuit design are evaluated using a software program that characterizes a hardware description language representing the circuit components and their interconnectivity. A noise power value is calculated for each bit, and bits are identified as being susceptible to data error based upon the noise power value and a signal-to-noise (SNR) ratio reference value. A characterization of the circuit components (e.g., a quality factor) is provided based upon a number of bits susceptible to data errors.
Abstract:
A FlexRay network guardian including: a resetting leading coldstart node (RLCN) detector configured to detect a RLCN failure; a deaf coldstart node (DCN) detector configured to detect a DCN failure; a babbling idiot (BI) detector configured to detect a BI failure; and a FlexRay network decoder configured to output a signal regarding the status of the FlexRay network to the RLCN detector, DCN detector, and BI detector, wherein the RLCN detector, DCN detector, and BI detector are configured to send an indication of a failure to a containment module.
Abstract:
A priority queue sorting system including a priority queue and a message storage. The priority queue includes multiple priority blocks that are cascaded in order from a lowest priority block to a highest priority block. Each priority block includes a register block storing an address and an identifier, compare circuitry that compares a new identifier with the stored identifier for determining relative priority, and select circuitry that determines whether to keep or shift and replace the stored address and identifier within the priority queue based on the relative priority. The message storage stores message payloads, each pointed to by a corresponding stored address of a corresponding priority block. Each priority block contains its own compare and select circuitry and determines a keep, shift, or store operation. Thus, sorting is independent of the length of the priority queue thereby achieving deterministic sorting latency that is independent of the queue length.
Abstract:
A central network component, a FlexRay-compatible central network component, and a method for bit processing in a central network component are described. In one embodiment, a central network component for facilitating communication among communication nodes includes a bit oversampling module configured to oversample bits received from a first communication node of the communication nodes with an oversampling factor to generate oversampled bit streams, a time point selection module configured to select time points in the oversampled bit streams, where the time points correspond to inner samples of the oversampled bit streams with respect to the oversampling factor, and a bit outputting module configured to output the inner samples to a second communication node of the communication nodes between the time points. Other embodiments are also described.
Abstract:
A FlexRay network guardian including: a resetting leading coldstart node (RLCN) detector configured to detect a RLCN failure; a deaf coldstart node (DCN) detector configured to detect a DCN failure; a babbling idiot (BI) detector configured to detect a BI failure; and a FlexRay network decoder configured to output a signal regarding the status of the FlexRay network to the RLCN detector, DCN detector, and BI detector, wherein the RLCN detector, DCN detector, and BI detector are configured to send an indication of a failure to a containment module.
Abstract:
A FlexRay network guardian including: a resetting leading coldstart node (RLCN) detector configured to detect a RLCN failure; a deaf coldstart node (DCN) detector configured to detect a DCN failure; a babbling idiot (BI) detector configured to detect a BI failure; and a FlexRay network decoder configured to output a signal regarding the status of the FlexRay network to the RLCN detector, DCN detector, and BI detector, wherein the RLCN detector, DCN detector, and BI detector are configured to send an indication of a failure to a containment module.
Abstract:
Data communications are effected over one or more network branches to ensure appropriate receipt of data at different devices on the network. In accordance with an example embodiment, time-based communications are effected for a plurality of different network devices, at least two of which are connected to a common wired network link, with each network device being assigned to communicate during different time slots within a communication cycle. Each communication received on the common wired network link is assessed as being error-indicative or not error-indicative. In response to a received communication on the common wired network link being assessed as being error-indicative, the common wired network link is operated to corrupt data received on the branch, such as by driving the branch during a time slot in which the error-indicative communication is received, therein ensuring that other network devices disregard the data received during that time slot.
Abstract:
A FlexRay network guardian including: a resetting leading coldstart node (RLCN) detector configured to detect a RLCN failure; a deaf coldstart node (DCN) detector configured to detect a DCN failure; a babbling idiot (BI) detector configured to detect a BI failure; and a FlexRay network decoder configured to output a signal regarding the status of the FlexRay network to the RLCN detector, DCN detector, and BI detector, wherein the RLCN detector, DCN detector, and BI detector are configured to send an indication of a failure to a containment module.
Abstract:
A central network component, a FlexRay-compatible central network component, and a method for bit processing in a central network component are described. In one embodiment, a central network component for facilitating communication among communication nodes includes a bit oversampling module configured to oversample bits received from a first communication node of the communication nodes with an oversampling factor to generate oversampled bit streams, a time point selection module configured to select time points in the oversampled bit streams, where the time points correspond to inner samples of the oversampled bit streams with respect to the oversampling factor, and a bit outputting module configured to output the inner samples to a second communication node of the communication nodes between the time points. Other embodiments are also described.