Abstract:
An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
A representative printable composition comprises a liquid or gel suspension of a plurality of metallic particles; a plurality of semiconductor particles; and a first solvent. The pluralities of particles may also be comprised of an alloy of a metal and a semiconductor. The composition may further comprise a second solvent different from the first solvent. In a representative embodiment, the first solvent comprises a polyol or mixtures thereof, such as glycerin, and the second solvent comprises a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the metallic particles and the semiconductor particles are nanoparticles between about 5 nm to about 1.5 microns in any dimension. A representative metallic and semiconductor particle ink can be printed and annealed to produce a conductor.
Abstract:
In one embodiment, a security label comprises a random arrangement of printed LEDs. During fabrication of the label, the LEDs are energized, and the resulting dot pattern is converted into a unique digital first code and stored in a database. The label is then attached to an object to be later authenticated, or the LEDs are printed directly on the object, such as a passport, license, bank note, certificate, etc. For authenticating the object, the LEDs are energized and the dot pattern is converted into a code. The code is compared to the first code stored in the database. If there is a match, the object is authenticated. The label may also have a printed second code associated with the first code, and both codes must match codes stored in the database for authentication. The general shape of the printed pattern may convey the proper orientation of the pattern.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of fabricating an electronic device comprises: depositing one or more first conductors; and depositing a plurality of diodes suspended in a mixture of a first solvent and a viscosity modifier. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus comprises: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between 2.5 to 7 microns; a plurality of first terminals spaced apart and coupled to the light emitting region peripherally on a first side, each first terminal of the plurality of first terminals having a height between about 0.5 to 2 microns; and one second terminal coupled centrally to a mesa region of the light emitting region on the first side, the second terminal having a height between 1 to 8 microns.
Abstract:
Active LEDs have a control transistor in series with an LED and have a top electrode, a bottom electrode, and a control electrode. The active LEDs are microscopic and dispersed in an ink. A substrate has column lines, and the active LEDs are printed at various pixel locations so the bottom electrodes contact the column lines. A hydrophobic mask defines the pixel locations. Due to the printing process, there are different numbers of active LEDs in the various pixel locations. Row lines and control lines contact the top and control electrodes so that the active LEDs in each single pixel location are connected in parallel. If the LEDs emit blue light, red and green phosphors are printed over various pixel locations to create an ultra-thin color display. Any active LED may be addressed using row and column addressing, and the brightness may be controlled using the control lines.
Abstract:
A programmable circuit includes an array of printed groups of microscopic transistors or diodes. The devices are pre-formed and printed as an ink and cured. A patterned hydrophobic layer defines the locations of the printed dots of the devices. The devices in each group are connected in parallel so that each group acts as a single device. Each group has at least one electrical lead that terminates in a patch area on the substrate. An interconnection conductor pattern interconnects at least some of the leads of the groups in the patch area to create logic circuits for a customized application of the generic circuit. The groups may also be interconnected to be logic gates, and the gate leads terminate in the patch area. The interconnection conductor pattern then interconnects the gates for form complex logic circuits.