Abstract:
An electronic component includes a plurality of electrodes provided in a rectangular or substantially rectangular box-shaped area on an upper surface of a substrate, an electronic component element mounted on the substrate by flip-chip bonding, and an identification mark. The identification mark is provided between a first electrode, which is arranged along one side of the rectangular or substantially rectangular box-shaped area, and a second electrode, which is adjacent to the first electrode along the one side, of the plurality of electrodes provided on the upper surface of the substrate, and is located on or outside a line connecting the outer side edges of the first and second electrodes.
Abstract:
A dielectric waveguide filter includes at least four dielectric waveguide resonators arranged along a main coupling path for signal propagation, and main coupling portions each of which is provided between the dielectric waveguide resonators that are adjacent to each other along the main coupling path among the at least four dielectric waveguide resonators. The main coupling portions include an inductive coupling portion and a capacitive coupling portion, and the inductive coupling portion and the capacitive coupling portion are alternately and repeatedly arranged along the main coupling path.
Abstract:
A variable filter circuit includes: a series arm connected in series between a signal input terminal and a signal output terminal; a parallel arm connected between the series arm and a ground terminal that has a resonator; and a variable reactance portion in the parallel arm, and the resonator of a parallel arm at an initial stage connected to the signal input terminal that has a resonant frequency fr and an anti-resonant frequency fa that satisfy 100×(fn−fr)/(fa−fr)≤23.9(%) for communication bands for each of which a stop band is set so as to be close to a high-frequency side of a pass band, among the plurality of communication bands, where a resonant frequency is fr, an anti-resonant frequency is fa, and a cutoff frequency at a high-frequency side of a pass band of each communication band is fn.