摘要:
Methods and systems for laser etching substrates to fine tune antennas for wireless communication are provided. A method includes laser etching an antenna element design into a substrate material. The antenna element design is for receiving conductive material to form an antenna structure. The method also includes laser etching a first area of the substrate material to change an intrinsic property of the substrate material in order to control an electrical characteristic of the antenna structure.
摘要:
A method and apparatus for obtaining a set of optimized angles of arrival for a corresponding set of radio links. The set of radio links model a radio environment of a wireless unit operating at a particular location within in a radio system. Each radio link represents a different propagation path between the wireless unit and transmitting antenna operating within the radio system. Each optimized angle of arrival represents an angle of arrival of one radio link with reference to the wireless unit. Each probe antenna of a set of probe antennas is positioned at a corresponding angle of the set of optimized angles of arrival. A corresponding set of probe radio signals is transmitted from the set of probe antennas.
摘要:
A system for production of an electromagnetic (EM) field having EM emissions mitigated at one or more predetermined locations within a Hearing Aid Compliant (HAC) measurement plane is provided. The EM field mitigation system includes a ground plane, an antenna element, and a parasitic resonator element. The antenna element is coupled to the ground plane and resonates within at least one predetermined frequency band for transmitting and receiving the radio frequency (RF) signals modulated at one or more frequencies within the at least one predetermined first frequency band. The parasitic resonator element includes at least a half-wavelength resonator portion floating above the ground plane and a second half-wavelength resonator portion floating above the ground plane, crossing an effective electric field mid-line of the ground plane, and located a predetermined distance from the antenna element for mitigation of the EM emissions of the antenna element at the one or more predetermined locations within the HAC measurement plane.
摘要:
A mobile communication device has a first antenna and a second antenna wherein a primary subscriber identification module (“SIM”) is linked to the first antenna. The second antenna is shared between a secondary SIM transceiver path and a multiple-input, multiple-output (“MIMO”) transceiver path. A power splitter disposed in the secondary SIM transceiver path is configured to adaptively set a power split between the MIMO transceiver path and the secondary SIM transceiver path based on a current signal-to-noise ratio associated with the MIMO transceiver path.
摘要:
Disclosed apparatuses obtain real-time performance measurements and adaptively select multiple-input, multiple-output (MIMO) antennas to improve MIMO antenna performance. A correlation estimator determines an approximation of instantaneous antenna correlation values. One method includes obtaining a channel quality indicator (CQI) measurement for first and second antennas of a mobile device. The method determines a composite CQI for the two antennas and estimates the antenna correlation for the first and second antennas based on the composite CQI. The method can include performing a lookup operation in a CQI table mapping composite CQI to coding rates. The method can include obtaining a signal-to-noise ratio (SNR) measurement for the first and second antennas of the mobile device, and estimating the antenna correlation for the first and second antennas based on the composite CQI and the SNR measurement.
摘要:
A wearable electronic device includes a conductive housing, which has a main body and at least a first pair of conductive lugs external to and mechanically coupled to the main body. The main body of the conductive housing forms at least part of an antenna structure that is adapted for at least one of generating or receiving the wireless radio frequency signal. The wearable electronic device further includes a non-conductive pin, which extends between the ends of the conductive lugs, and a use location attachment. The use location attachment includes a plurality of segments, where at least one of the segments, which most closely mechanically couples to the non-conductive pin and the first pair of conductive lugs, is nonconductive, and where other ones of the plurality of segments of the use location attachment are conductive.
摘要:
The present invention provides a wearable electronic device adapted for supporting wireless radio frequency communications including at least one of generating or receiving a wireless radio frequency signal. The wearable electronic device includes a conductive housing, which has a main body and at least a first pair of conductive lugs external to and mechanically coupled to the main body. Each of the conductive lugs has a first end that is mechanically coupled to the main body of the conductive housing and a second end which extends away from the main body along a length of the conductive lug. The main body of the conductive housing forms at least part of an antenna structure that is adapted for at least one of generating or receiving the wireless radio frequency signal. The wearable electronic device further includes a non-conductive pin, which extends between the second ends of the first pair of conductive lugs, and a use location attachment. The use location attachment mechanically couples the conductive housing of the wearable electronic device to a use location via the non-conductive pin and the first pair of conductive lugs. The use location attachment includes a plurality of segments, where at least one of the segments, which most closely mechanically couples to the non-conductive pin and the first pair of conductive lugs, is nonconductive, and where other ones of the plurality of segments of the use location attachment are conductive.
摘要:
A method is used for reconfiguring an electronic device, having at least three antenna elements, between different antenna modes. The method includes configuring, by a controller, the electronic device into a first antenna mode, wherein at least two of the antenna elements are coupled together to operate as a single antenna. The method further includes, reconfiguring, by the controller, the electronic device from the first antenna mode into a second antenna mode, wherein at least one antenna configured for use during the second antenna mode includes only a single antenna element.
摘要:
Methods and systems for laser etching substrates to fine tune antennas for wireless communication are provided. A method includes laser etching an antenna element design into a substrate material. The antenna element design is for receiving conductive material to form an antenna structure. The method also includes laser etching a first area of the substrate material to change an intrinsic property of the substrate material in order to control an electrical characteristic of the antenna structure.
摘要:
A mobile device accesses antenna equipment of at least a first antenna augmentation peripheral (AAP) using a first set of radio channels for communication between the mobile device and the first AAP and uses a second set of radio channels for communication with a wide area network (WAN). The mobile device receives a first performance metric for at least one channel of the second set of radio channels from the first AAP using the first set of radio channels. The mobile device determines a composite performance metric using the first performance metric and a second performance metric related to the second set of radio channels. The mobile device transmits the composite performance metric as the mobile device performance metric to the WAN and obtains a downlink radio resource assignment from the WAN based on the composite performance metric.