摘要:
A thin silicon nitride layer is deposited at an ultra low deposition rate by PECVD by reducing the NH3 flow rate and/or reducing the SiH4 flow rate. Embodiments include depositing a thin layer of silicon nitride, e.g., 100 Å or less, on a thin silicon oxide liner over a gate electrode, at an NH3 flow rate of 100 to 800 sccm, a SiH4 flow rate of 50 to 100 sccm and a reduced pressure of 0.8 to 1.8 Torr. Embodiments of the present invention further include depositing the silicon nitride layer in multiple deposition stages, e.g., depositing the silicon nitride layer in five deposition stages of 20 Å each.
摘要:
A silicon oxide layer is deposited at a thickness of about 50 Å or less by a multi-stage method comprising depositing a sub-layer of silicon oxide in each stage by PECVD at a low deposition rate. Embodiments include depositing a silicon dioxide liner over a gate electrode in at least four stages, each stage comprising depositing a sub-layer at a thickness of 10 Å or less.
摘要:
Data retention in flash memory devices, such as mirrorbit devices, is improved by reducing the generation and/or diffusion of hydrogen ions during back end processing, such as annealing inlaid Cu. Embodiments include annealing inlaid Cu in an N2 atmosphere containing low H2 or no H2, and at temperatures less than 200° C., e.g., 100° C. to 150° C.
摘要翻译:通过减少后端处理中的氢离子的产生和/或扩散(例如退火的Cu)来改善闪存器件(例如镜像位装置)中的数据保留。 实施方案包括在含有低H 2 N 2或无H 2 N的N 2 O 2气氛中以及在低于200℃的温度下退火嵌入的Cu, 例如,100℃至150℃
摘要:
Gap filling between features which are closely spaced is significantly improved by initially depositing a thin conformal layer followed by depositing a layer of gap filling dielectric material. Embodiments include depositing a thin conformal layer of silicon nitride or silicon oxide, as by atomic layer deposition or pulsed layer deposition, into the gap between adjacent gate electrode structures such that it flows into undercut regions of dielectric spacers on side surfaces of the gate electrode structures, and then depositing a layer of BPSG or P-HDP oxide on the thin conformal layer into the gap. Embodiments further include depositing the layers at a temperature less than 430° C., as by depositing a P-HDP oxide after depositing the conformal liner when the gate electrode structures include a layer of nickel silicide.
摘要:
Cu interconnects are formed with composite capping layers for reduced electromigration, improved adhesion between Cu and the capping layer, and reduced charge loss in associated non-volatile transistors. Embodiments include depositing a first relatively thin silicon nitride layer having a relatively high concentration of Si—H bonds on the upper surface of a layer of Cu for improved adhesion and reduced electromigration, and depositing a second relatively thick silicon nitride layer having a relatively low concentration of Si—H bonds on the first silicon nitride layer for reduced charge loss.
摘要:
During semiconductor fabrication homogeneous gap-filling is achieved by depositing a thin dielectric layer into the gap, post deposition curing, and then repeating deposition and post deposition curing until gap-filling is completed. Embodiments include depositing a layer of low deposition temperature gap-fill dielectric into a high aspect ratio opening, such as a shallow trench or a gap between closely spaced apart gate electrode structures, as at a thickness of about 10 Å to about 500 Å, curing after deposition, as by UV radiation or by heating at a temperature of about 400° C. to about 1000° C., depositing another layer of low deposition temperature gap-filled dielectric, and curing after deposition. Embodiments include separately depositing and separately curing multiple layers.
摘要:
Data retention in flash memory devices, such as mirrorbit devices, is improved by reducing the generation and/or diffusion of hydrogen ions during back end processing, such as annealing inlaid Cu. Embodiments include annealing inlaid Cu in an N2 atmosphere containing low H2 or no H2, and at temperatures less than 200° C., e.g., 100° C. to 150° C.
摘要:
During semiconductor fabrication homogeneous gap-filling is achieved by depositing a thin dielectric layer into the gap, post deposition curing, and then repeating deposition and post deposition curing until gap-filling is completed. Embodiments include depositing a layer of low deposition temperature gap-fill dielectric into a high aspect ratio opening, such as a shallow trench or a gap between closely spaced apart gate electrode structures, as at a thickness of about 10 Å to about 500 Å, curing after deposition, as by UV radiation or by heating at a temperature of about 400° C. to about 1000° C., depositing another layer of low deposition temperature gap-filled dielectric, and curing after deposition. Embodiments include separately depositing and separately curing multiple layers.
摘要:
A method of forming a dielectric between memory cells in a device includes forming multiple memory cells, where a gap is formed between each of the multiple memory cells. The method further includes performing a high density plasma deposition (HDP) process to fill at least a portion of the gap between each of the multiple memory cells with a dielectric material.
摘要:
An exposed surface of inlaid Cu is plasma treated for improved capping layer adhesion while controlling plasma conditions to avoid damaging porous low-k materials. Embodiments include forming a dual damascene opening in a porous dielectric material having a dielectric constant (k) of up to 2.4, e.g., 2.0 to 2.2, filling the opening with Cu, conducting CMP, plasma treating the exposed Cu surface in NH3 or H2 at a low power, e.g., 75 to 125 watts, for a short period of time, e.g., 2 to 8 seconds, without etching the porous low-k material and depositing a capping layer, e.g., silicon nitride or silicon carbide.