Abstract:
Data retention in flash memory devices, such as mirrorbit devices, is improved by reducing the generation and/or diffusion of hydrogen ions during back end processing, such as annealing inlaid Cu. Embodiments include annealing inlaid Cu in an N2 atmosphere containing low H2 or no H2, and at temperatures less than 200° C., e.g., 100° C. to 150° C.
Abstract translation:通过减少后端处理中的氢离子的产生和/或扩散(例如退火的Cu)来改善闪存器件(例如镜像位装置)中的数据保留。 实施方案包括在含有低H 2 N 2或无H 2 N的N 2 O 2气氛中以及在低于200℃的温度下退火嵌入的Cu, 例如,100℃至150℃
Abstract:
A non-planar target can be configured for use in a plasma vapor deposition (PVD) process in which ions bombard the non-planar target and cause alloy atoms present in the non-planar target to be knocked loose and form an alloy film layer. The target includes a top planar section having a first alloy concentration and a side annular section having a second alloy concentration. The side annular section has ends coupled to ends of the top planar section. The first alloy concentration and the second alloy concentration are different.
Abstract:
A method of forming a metal or metal nitride layer interface between a copper layer and a silicon nitride layer can include providing a metal organic gas or metal/metal nitride precursor over a copper layer, forming a metal or metal nitride layer from reactions between the metal organic gas or metal/metal nitride precursor and the copper layer, and depositing a silicon nitride layer over the metal or metal nitride layer and copper layer. The metal or metal nitride layer can provide a better interface adhesion between the silicon nitride layer and the copper layer. The metal layer can improve the interface between the copper layer and the silicon nitride layer, improving electromigration reliability and, thus, integrated circuit device performance.
Abstract:
This invention relates to a high-performance gyrotron for the production of electromagnetic millimeter or submillimeter waves with a quasi-optical resonator. The latter is formed by two concave mirrors (1, 2) placed mutually opposite one another on an optical axis. For increasing the decoupling efficiency as well as for reducing the radiation into the environment the quasi-optical resonator is placed in a housing (4), which at least in sections is electrically conductive.
Abstract:
An ultraviolet light absorbent silicon oxynitride layer overlies a memory cell including a pair of source/drains, a gate insulator, a floating gate, a dielectric layer, and a control gate. A conductor is disposed through the silicon oxynitride layer for electrical connection to the control gate, and another conductor is disposed through the silicon oxynitride layer for electrical connection to a source/drain.
Abstract:
A proximity sensor is described including a capacitor formed by a first conductive element and a second conductive element. The first conductive element and the second conductive element are situated at a magnetic head, a slider that connects to the magnetic head, a reader of the magnetic head, a writer of the magnetic head, a reader shield of the magnetic head, or a writer shield of the magnetic head. A capacitance and a fringing electric field are formed by the capacitor when there is a voltage difference between the first conductive element and the second conductive element. The capacitor is situated such that the fringing electric field changes with a positioning change of a magnetic storage medium with respect to at least one of the first conductive element and the second conductive element. The capacitor is also situated such that the capacitance changes with the fringing electric field change.
Abstract:
An ultraviolet light absorbent silicon oxynitride layer overlies a memory cell including a pair of source/drains, a gate insulator, a floating gate, a dielectric layer, and a control gate. A conductor is disposed through the silicon oxynitride layer for electrical connection to the control gate, and another conductor is disposed through the silicon oxynitride layer for electrical connection to a source/drain.
Abstract:
Semiconductor devices with highly reliable Cu interconnects exhibiting reduced resistance are formed by sequentially depositing a seed layer by PVD, depositing a conformal seed layer enhancement film by electroplating, and then thermal annealing the seed layer enhancement film in an inert or reducing atmosphere to expel impurities, enhance film conductivity, reduce film stress, increase film density, and reduce film roughness. Embodiments include single and dual Cu damascene techniques formed in dielectric layers having a dielectric constant no greater than about 3.9.
Abstract:
A method of forming a conductive structure such as a copper conductive structure, line, or via is optimized for large grain growth and distribution of alloy elements. The alloy elements can reduce electromigration problems associated with the conductive structure. The conductive structure is self-annealed or first annealed in a low temperature process over a longer period of time. Another anneal is utilized to distribute alloy elements.
Abstract:
Semiconductor devices with highly reliable Cu interconnects exhibiting reduced resistance are formed by sequentially depositing a seedlayer by PVD, depositing a conformal seedlayer enhancement film by CVD, and then laser thermal annealing the seedlayer enhancement film in nitrogen to expel impurities, enhance film conductivity, reduce film stress, increase film density, and reduce film roughness. Embodiments include single and dual Cu damascene techniques formed in dielectric layers having a dielectric constant no greater than about 3.9.