Abstract:
An oriented film structure of improved water vapor transmission rate is prepared from an extruded and stretched mixture of (1) high crystallinity polypropylene (HCPP) having intermolecular stereoregularity greater than 93% and (2) a moisture barrier improving amount of polyterpene resin.
Abstract:
The present invention is directed to a biaxially oriented multi-layer film which comprises: (a) a core layer comprising a syndiotactic propylene homopolymer; and (b) at least one additional layer adjacent to the core layer comprising a polymer which is an ethylene or a propylene homopolymer, ethylene copolymer or terpolymer containing comonomers of propylene and/or butene-1. Optionally, there can be a skin layer applied to the exposed surface of the outer layer. The skin layer and/or the at least one additional layer is a polyolefin selected from the group consisting of isotactic polypropylene, polyethylene, ethylene-propylene random copolymer, ethylene-propylene block copolymer or ethylene-propylene-butene-1 terpolymer.
Abstract:
An oriented multi-layer film comprises:(a) at least one layer comprising an olefin polymer, for example, isotactic polypropylene; and(b) a barrier layer adjacent the at least one layer of (a), comprising a syndiotactic polypropylene which preferably possesses an isotacticity of less than 25%, more preferably less than 15%, in particular less than 6%, and moisture and oxygen permeability reducing amounts of wax.
Abstract:
An oriented multilayer film comprises: (a) a base layer containing a thermoplastic polymer; (b) at least one tie layer; and (c) at least one outer layer containing a metallocene catalyzed polyethylene chosen for its performance as an adhesion layer and having improved processability. The multilayer films are useful for various end uses including printing, metallization, adhesive lamination, and cold sealing.
Abstract:
Disclosed herein is a process to produce a laminate comprises coating at least an outer surface of a dynamically vulcanized alloy film with an adhesive composition to produce the laminate, wherein the adhesive layer has a thickness of less than or equal to about 5 microns, wherein the dynamically vulcanized alloy film comprises a thermoplastic elastomer composition containing a thermoplastic resin as a continuous phase, and a rubber composition dispersed therein, as a dispersed phase. A laminate and a pneumatic tire comprising the laminate are also disclosed.
Abstract:
A process for preparing a blend of thermoplastic polymer and resin modifier within a single-screw extruder, wherein the resin modifier is a hydrocarbon resin.
Abstract:
Disclosed herein is a process to produce a laminate comprises coating at least an outer surface of a dynamically vulcanized alloy film with an adhesive composition to produce the laminate, wherein the adhesive layer has a thickness of less than or equal to about 5 microns, wherein the dynamically vulcanized alloy film comprises a thermoplastic elastomer composition containing a thermoplastic resin as a continuous phase, and a rubber composition dispersed therein, as a dispersed phase. A laminate and a pneumatic tire comprising the laminate are also disclosed.
Abstract:
Provided are multi-layered white opaque films composed of at least two skin layers, at least one tie layer, and at least one core layer. The at least two skin layers are each composed of one or more polyolefins. The at least one tie layer is composed of one or more hydrocarbon resins. The at least one core layer is composed of a blend of one or more polyolefins and one or more cavitating agents. The multi-layered white opaque films described herein exhibit improvements in light transmission, stiffness, and water vapor transmission rate. Moreover, these films were found to exhibit improved cavitation as tested by optical gauge and light transmission.
Abstract:
Multi-layer, heat-sealable polypropylene films are disclosed which possess good coefficient of friction, and thus good machinability, and which are also capable of forming good bonds with water based adhesives. The film structures consist essentially of(A) an outer heat sealable layer coextensively adherent to the upper surface of core layer (B), said outer layer (A) being formed from a polymer composition (a) consisting essentially of heat sealable resin compounded with one or more slip additives which are incompatible with polypropylene,(B) a core layer derived from a polymer composition (b) consisting essentially of an isotactic polypropylene compounded with one or more slip additives which are incompatible with polypropylene, and(C) an outer layer coextensively adherent to the lower surface of core layer (B), said outer layer (C) being formed from a polymer composition consisting essentially of isotactic polypropylene in the substantial absence of slip additives;wherein the total amount of slip additive in said film structure is effective to provide the outer surface of outer layer (A) with a coefficient of friction sufficient for high speed heat sealing packaging operations but insufficient to cause substantial hazing of said structure.
Abstract:
A process for preparing a blend of thermoplastic polymer and resin modifier within a single-screw extruder, wherein the resin modifier is a hydrocarbon resin.