Abstract:
Differences between data objects stored on a mass storage device can be identified quickly and efficiently by comparing block numbers stored in data structures that describe the data objects. Bit-by-bit or byte-by-byte comparisons of the objects' actual data need only be performed if the block numbers are different. Objects that share many data blocks can be compared much faster than by a direct comparison of all the objects' data. The fast comparison techniques can be used to improve storage server mirrors and database storage operations, among other applications.
Abstract:
A technique to name data is disclosed to allow preservation of storage efficiency over a link between a source and a destination in a replication relationship as well as in storage at the destination. The technique allows the source to send named data to the destination once and refer to it by name multiple times in the future, without having to resend the data. The technique also allows the transmission of data extents to be decoupled from the logical containers that refer to the data extents. Additionally, the technique allows a replication system to accommodate different extent sizes between replication source and destination while preserving storage efficiency.
Abstract:
Provided in certain embodiments are new methods for forming azido modified nucleic acid conjugates of reporter molecules, carrier molecules or solid support. In other embodiments are provided methods for enzymatically labeling nucleic acids with an azide group.
Abstract:
A technique to name data is disclosed to allow preservation of storage efficiency over a link between a source and a destination in a replication relationship as well as in storage at the destination. The technique allows the source to send named data to the destination once and refer to it by name multiple times in the future, without having to resend the data. The technique also allows the transmission of data extents to be decoupled from the logical containers that refer to the data extents. Additionally, the technique allows a replication system to accommodate different extent sizes between replication source and destination while preserving storage efficiency.
Abstract:
Method and system for replicating a storage volume is provided. Information is adaptively replicated in a swap mode or a copy mode. When information is copied from a storage volume to a memory buffer, an application determines if another information transfer from the same source volume is pending. If a transfer from the same source is pending, then information is copied from the memory buffer to a stolen buffer in a copy mode. If a transfer from the same source is not pending, then instead of copying the information, the application enables a swap mode. During the swap mode, an operating system for a storage system swaps a pointer from the stolen buffer to information stored in the memory buffer. The memory buffer itself is invalidated so that no other module can access the memory buffer. Because the pointers are swapped, the application accesses information directly from the memory buffer.
Abstract:
Provided in certain embodiments are new methods for forming azido modified nucleic acid conjugates of reporter molecules, carrier molecules or solid support. In other embodiments are provided methods for enzymatically labeling nucleic acids with an azide group.