Abstract:
A wireless communication device includes a first wireless communication system and a second wireless communication system. Regarding the first wireless communication system, an up-conversion circuit up-converts a first transmit (TX) signal in a baseband to generate a second TX signal with a first carrier frequency, and a front-end circuit transmits the second TX signal to another wireless communication device. Regarding the second wireless communication system, a first down-conversion circuit down-converts a first receive (RX) signal with a second carrier frequency to generate a second RX signal with a third carrier frequency, and a second down-conversion circuit down-converts the second RX signal with the third carrier frequency to generate a third RX signal in the baseband. The third carrier frequency is different from all fundamental frequencies included in a band combination that is employed at the first wireless communication system and is supported by another wireless communication device.
Abstract:
A circuit for generating a plurality of oscillating signals with different phases includes a frequency divider, a first delay chain, a second delay chain and a calibration circuit. The frequency divider is arranged for frequency dividing a first input signal and a second input signal to generate a first frequency-divided input signal and a second frequency-divided input signal. The first delay chain is arranged for delaying the first frequency-divided input signal, and the second delay chain is arranged for delaying the second frequency-divided input signal. The calibration circuit is arranged for controlling delay amounts of the first delay chain and the second delay chain according to signals within the first delay chain or the second delay chain; wherein output signals of a portion delay cells within the first delay chain and the second delay chain serve as the plurality of oscillating signals with different phases.
Abstract:
A method for avoiding inter-modulation distortion in a communications apparatus capable of supporting carrier aggregation and communicating with a peer communications apparatus in a wireless network via at least a first CC and a second CC includes: determining a frequency adjustment value for adjusting a first oscillating frequency of a first local oscillation signal utilized for processing an RF signal of the first CC or a second oscillating frequency of a second LO signal utilized for processing an RF signal of the second CC when an RF signal or a baseband signal of the second CC is interfered with by an inter-modulation distortion signal contributed by any signal component related to the first CC; and adjusting the first oscillating frequency or the second oscillating frequency according to the frequency adjustment value.
Abstract:
A signal generating system for generating an output signal with a 50% duty cycle, comprising: a frequency dividing module, comprising an odd number of level triggering devices, for generating a plurality of frequency divided signals utilizing a frequency dividing ratio equaling to M, wherein the M is an positive integer; and a signal combining module, for combining at least two of the frequency divided signals to generate at least one output combined signal. The signal generating system generates the output signal based on the output combined signal. The frequency dividing module cooperates the signal combining module to provide a frequency dividing ratio equaling to N.5, wherein the N is a positive integer.
Abstract:
A frequency dividing system, which comprises a control circuit, a first multiple input sharing input level triggering device, a first input level triggering group and a second input level triggering group. The first multiple input sharing input level triggering device receives a first frequency dividing signal to generate a feedback signal according to a level of a first clock signal, or receives a second frequency dividing signal to generate the feedback signal according to a level of a second clock signal. The first/second input level triggering group generates the first/second frequency dividing signal to the first multiple input sharing input level triggering device according to the feedback signal if active; and outputs a fixed voltage to the first multiple input sharing input level triggering device if non-active.
Abstract:
A frequency dividing system, which comprises a control circuit, a first multiple input sharing input level triggering device, a first input level triggering group and a second input level triggering group. The first multiple input sharing input level triggering device receives a first frequency dividing signal to generate a feedback signal according to a level of a first clock signal, or receives a second frequency dividing signal to generate the feedback signal according to a level of a second clock signal. The first/second input level triggering group generates the first/second frequency dividing signal to the first multiple input sharing input level triggering device according to the feedback signal if active; and outputs a fixed voltage to the first multiple input sharing input level triggering device if non-active.
Abstract:
According to at least one aspect, a communication system is provided. The communication system includes a first switch device configured to receive a first plurality of radio frequency (RF) signals detected by an antenna array and provide an RF signal selected from among the first plurality of RF signals to a receiver circuit, the first plurality of RF signals comprising a first RF signal in a first frequency range and a second RF signal in a second frequency range that is different from the first frequency range; and a second switch device configured to receive a second plurality of RF signals detected by the antenna array and provide an RF signal selected from among the second plurality of RF signals to the receiver circuit, the second plurality of RF signals comprising a third RF signal in the first frequency range and a fourth RF signal in the second frequency range.
Abstract:
A circuit for generating a plurality of oscillating signals with different phases includes a frequency divider, a first delay chain, a second delay chain and a calibration circuit. The frequency divider is arranged for frequency dividing a first input signal and a second input signal to generate a first frequency-divided input signal and a second frequency-divided input signal. The first delay chain is arranged for delaying the first frequency-divided input signal, and the second delay chain is arranged for delaying the second frequency-divided input signal. The calibration circuit is arranged for controlling delay amounts of the first delay chain and the second delay chain according to signals within the first delay chain or the second delay chain; wherein output signals of a portion delay cells within the first delay chain and the second delay chain serve as the plurality of oscillating signals with different phases.
Abstract:
According to at least one aspect, a communication system is provided. The communication system includes a first switch device configured to receive a first plurality of radio frequency (RF) signals detected by an antenna array and provide an RF signal selected from among the first plurality of RF signals to a receiver circuit, the first plurality of RF signals comprising a first RF signal in a first frequency range and a second RF signal in a second frequency range that is different from the first frequency range; and a second switch device configured to receive a second plurality of RF signals detected by the antenna array and provide an RF signal selected from among the second plurality of RF signals to the receiver circuit, the second plurality of RF signals comprising a third RF signal in the first frequency range and a fourth RF signal in the second frequency range.
Abstract:
A signal generating system for generating an output signal with a 50% duty cycle, comprising: a frequency dividing module, comprising an odd number of level triggering devices, for generating a plurality of frequency divided signals utilizing a frequency dividing ratio equaling to M, wherein the M is an positive integer; and a signal combining module, for combining at least two of the frequency divided signals to generate at least one output combined signal. The signal generating system generates the output signal based on the output combined signal. The frequency dividing module cooperates the signal combining module to provide a frequency dividing ratio equaling to N.5, wherein the N is a positive integer.