摘要:
Semiconductive ceramic materials suitable for use in varistors, consisting essentially of a major proportion of Sr.sub.(1-x) Ca.sub.x TiO.sub.3, where x is from about 0.01 to about 0.50, the balance being at least one of Nb.sub.2 O.sub.5, Ta.sub.2 O.sub.5, WO.sub.3, La.sub.2 O.sub.3, CeO.sub.2, Nd.sub.2 O.sub.3, Y.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Pr.sub.6 O.sub.11 and Dy.sub.2 O.sub.3, and Na.sub.2 O. The ceramic materials may further comprise a minor proportion of at least one of Ag.sub.2 O, CuO, MnO.sub.2 and SiO.sub.2, and/or a minor proportion of Al.sub.2 O.sub.3. For the fabrication of ceramic bodies of the above compositions there are prepared mixtures of the noted ingredients in powdered form in various possible combinations, plus an organic binder. The mixtures are molded under pressure into desired shape. The moldings are first fired in a reductive or neutral atmosphere and then refired in an oxidative atmosphere. Na.sub.2 O can be included in the initial mixtures in the form of Na.sub.2 O itself and/or other Na compound such as NaF. Alternatively, either Na.sub.2 O itself or NaF is pasted and coated on the moldings after the initial firing thereof. The subsequent refiring of the coated moldings causes thermal diffusion of Na.sub.2 O therein.
摘要:
Ceramic materials suitable for use in varistors, enabling the same to function not only as such but also as capacitors. The ceramic materials comprise a major proportion of SrTiO.sub.3, the balance being: (1) at least one of Nb.sub.2 O.sub.5, Ta.sub.2 O.sub.5, WO.sub.3, La.sub.2 O.sub.3, CeO.sub.2, Nd.sub.2 O.sub.3, Y.sub.2 O.sub.3, Pr.sub.6 O.sub.11, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3, and Dy.sub.2 O.sub.3, for making the materials semiconductive; (2) Na.sub.2 O, for making surge-proof the varistors made from the ceramic materials and for improving their nonlinearity coefficients; and (3) Al.sub.2 O.sub.3, for improving the temperature dependences of the varistor voltages, as well as nonlinearity coefficients, of the varistors. Optionally the ceramic materials may further contain one or more of Ag.sub.2 O, CuO, MnO.sub.2, and SiO.sub.2, for still higher nonlinearity coefficients. Containing Al.sub.2 O.sub.3 in proportions ranging from 0.01 to 1.50 mole parts with respect to 100 mole parts of SrTiO.sub.3, the ceramic compositions make possible the provision of varistors having varistor voltages that hardly change in a temperature range as wide as, for example, from -40.degree. to +120.degree. C.
摘要:
Ceramic materials suitable for use in varistors, consisting essentially of a major proportion of SrTiO.sub.3, the balance being (1) at least one of Nb.sub.2 O.sub.5, Ta.sub.2 O.sub.5, WO.sub.3, La.sub.2 O.sub.3, CeO.sub.2, Nd.sub.2 O.sub.3, Y.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Pr.sub.6 O.sub.11, Eu.sub.2 O.sub.3, and Dy.sub.2 O.sub.3, for making the materials semiconductive, and (2) Na.sub.2 O, for making surge-proof the varistors made from the ceramic materials. As desired, the compositions may further include one or more of Ag.sub.2 O, CuO, MnO.sub.2, and SiO.sub.2 for a higher nonlinearity coefficient. Containing Na.sub.2 O in proportions ranging from approximately 0.02 to 2.50 mole parts, the ceramic compositions make possible the provision of varistors suffering little from current or voltage surges in use.
摘要:
Semiconductive ceramic materials suitable for use in varistors, consisting essentially of a major proportion of Sr(.sub.1-x)Ca.sub.x TiO.sub.3, where x is from about 0.01 to about 0.50, the balance being at least one of Nb.sub.2 O.sub.5, Ta.sub.2 O.sub.5, WO.sub.3, La.sub.2 O.sub.3, CeO.sub.2, Nd.sub.2 O.sub.3, Y.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Pr.sub.6 O.sub.11 and Dy.sub.2 O.sub.3, and Na.sub.2 O. The ceramic materials may further comprise a minor proportion of at least one of Ag.sub.2 O, CuO, MnO.sub.2 and SiO.sub.2, and/or a minor proportion of Al.sub.2 O.sub.3. For the fabrication of ceramic bodies of the above compositions there are prepared mixtures of the noted ingredients in powdered form in various possible combinations, plus an organic binder. The mixtures are molded under pressure into desired shape. The moldings are first fired in a reductive or neutral atmosphere and then refired in an oxidative atmosphere. Na.sub.2 O can be included in the initial mixtures in the form of Na.sub.2 O itself and/or other Na compound such as NaF. Alternatively, either Na.sub.2 O itself or NaF is pasted and coated on the moldings after the initial firing thereof. The subsequent refiring of the coated moldings causes thermal diffusion of Na.sub.2 O therein.
摘要:
Dielectric ceramic compositions consisting essentially of xZrO.sub.2 -yCeO.sub.2 -zSiO.sub.2 -TiO.sub.2 in which x+y+z=1 and x, y and z are represented within ranges by mole surrounded by a polygon having at its corners the points A, B, C and D of a ternary composition diagram of the attached drawing defined as follows,______________________________________x y z______________________________________A 0.98 0.01 0.01B 0.60 0.39 0.01C 0.60 0.18 0.22D 0.77 0.01 0.22______________________________________At least one oxide selected from the group consisting of Al.sub.2 O.sub.3, La.sub.2 O.sub.3 and Cr.sub.2 O.sub.3 may be further added to the above composition in an amount of from 0.05 to 1.0 parts by weight per 100 parts by weight of the above four components.
摘要翻译:基本上由xZrO2-yCeO2-zSiO2-TiO2组成的介电陶瓷组合物,其中x + y + z = 1和x,y和z在由多个边界包围的范围内表示,该多边形在其点的点A,B,C和 附图中的三元组成图D定义如下,-xyz -A 0.98 0.01 0.01 -B 0.60 0.39 0.01 -C 0.60 0.18 0.22 -D 0.77 0.01 0.22 - 选自Al2O3,La2O3中的至少一种氧化物 并且Cr 2 O 3可以进一步加入到上述组合物中,其量为每100重量份上述四种组分为0.05-1.0重量份。
摘要:
A dielectric ceramic material composed of primary and secondary ingredients forming in combination a polycrystalline ceramic proper, and of insulating substances diffused throughout the intergranular boundaries of the ceramic proper for an increase in apparent relative dielectric constant. The primary ingredients comprise, in relative proportions, 90.68-99.88 wt. % SrTiO.sub.3, 0.07-5.32 wt. % Nb.sub.2 O.sub.5, and 0.05-4.00 wt. % GeO.sub.2. The secondary ingredients comprise 0.02-0.10 wt. part SiO.sub.2 and 0.01-0.03 wt. part Al.sub.2 O.sub.3 with respect to 100 wt. parts of the primary ingredients, with the weight ratio of SiO.sub.2 to Al.sub.2 O.sub.3 being from 1.5 to 5.0. The insulating substances comprise 0.03-2.90 wt. % PbO, 0.11-4.34 wt. % Bi.sub.2 O.sub.3, and 0.001-0.18 wt. % B.sub.2 O.sub.3 with respect to the total weight of the primary and the secondary ingredients. In the fabrication of bodies of the ceramic the mixture of the insulating substances is coated or otherwise layered on polycrystalline ceramic bodies prepared from the primary and secondary ingredients. The coated ceramic bodies are then heated to cause diffusion of the insulating substances throughout their intergranular boundaries.
摘要:
A dielectric ceramic material composed of primary and secondary ingredients forming in combination a polycrystalline ceramic proper, and of insulating substances diffused throughout the intergranular boundaries of the ceramic proper for an increase in apparent relative dielectric constant. The primary ingredients comprise in relative proportions, 96.70-99.83 wt. % SrTiO.sub.3, 0.15-2.30 wt. % WO.sub.3, and 0.02-1.00 wt. % CuO. The secondary ingredients comprise 0.02-0.10 wt %. part SiO.sub.2 and 0.01-0.03 wt. part Al.sub.2 O.sub.3 with respect to 100 wt. parts of the primary ingredients, with the weight ratio of SiO.sub.2 to Al.sub.2 O.sub.3 being from 1.5 to 5.0. The insulating substances comprise 0.003-2.83 wt. % PbO, 0.10-4.30 wt. % Bi.sub.2 O.sub.3, and 0.001-0.18 wt. % B.sub.2 O.sub.3 with respect to the total weight of the primary and the secondary ingredients. In the fabrication of bodies of the ceramic the mixture of the insulating substances is coated or otherwise layered on polycrystalline ceramic bodies prepared from the primary and secondary ingredients. The coated ceramic bodies are then heated to cause diffusion of the insulating substances throughout their intergranular boundaries.
摘要:
A dielectric ceramic material composed of primary and secondary ingredients forming in combination a polycrystalline ceramic proper, and of insulating substances diffused throughout the intergranular boundaries of the ceramic proper for an increase in apparent relative dielectric constant. The primary ingredients comprise, in relative proportions, 95.18-99.65 wt. % SrTiO.sub.3, 0.33-3.32 wt. % Ta.sub.2 O.sub.5, and 0.02-1.50 wt. % CuO. The secondary ingredients comprise 0.02-0.10 wt. % part SiO.sub.2 and 0.01-0.03 wt. part Al.sub.2 O.sub.3 with respect to 100 wt. parts of the primary ingredients, with the weight ratio of SiO.sub.2 to Al.sub.2 O.sub.3 being from 1.50 to 5.0. The insulating substances comprise 0.03-2.75 wt. % PbO, 0.11-4.22 wt. % Bi.sub.2 O.sub.3, and 0.001-0.18 wt. % B.sub.2 O.sub.3 with respect to the total weight of the primary and the secondary ingredients. In the fabrication of bodies of the ceramic the mixture of the insulating substances is coated or otherwise layered on polycrystalline ceramic bodies prepared from the primary and secondary ingredients. The coated ceramic bodies are then heated to cause diffusion of the insulating substances throughout their intergranular boundaries.
摘要:
A ceramic composition capable of sintering at a sufficiently low temperature to enable the use of a low cost base metal as the electrode material in the fabrication of capacitors. The major ingredient of the composition is expressed as Ba.sub.k-x-y M.sub.x L.sub.y O.sub.k TiO.sub.2, where M is at least either of mag-nesium and zinc, L is at least either of strontium and calcium, k, x and y are numerals in the ranges of 1.00 to 1.04, 0.002 to 0.049, and 0.001 to 0.048, respectively, and x+y is a value in the range of 0.02 to 0.05. To this major ingredient is added a minor proportion of a mixture of lithium oxide, silicon dioxide, and, possibly, at least one of barium oxide, calcium oxide, and strontium oxide. For the fabrication of coherently bonded bodies of this composition, as for use as the dielectric bodies of capacitors, the moldings of the mixture of the major ingredient and additive in finely divided form are sintered in a reductive or neutral atmosphere and then reheated at a lower temperature in an oxidative atmosphere. The sintering temperature can be so low (typically from 1050.degree. to 1200.degree. C.) that the moldings can be co-sintered with base metal electrodes buried therein without difficulties encountered heretofore.
摘要:
A ceramic composition capable of sintering at a sufficiently low temperature to enable the use of a low cost base metal as the electrode material in the fabrication of capacitors. The major ingredient of the composition is expressed as Ba.sub.k-x M.sub.x O.sub.k TiO.sub.2, where M is one or more of magnesium, zinc, strontium, and calcium, and where k, and x are numerals in the ranges of 1.00 to 1.04, and 0.02 to 0.05, respectively. To this major ingredient is added a minor proportion of a mixture of boron oxide, silicon dioxide, and, possibly, at least one of barium oxide, magnesium oxide, zinc oxide, strontium oxide, and calcium oxide. For the fabrication of coherently bonded bodies of this composition, as for use as the dielectric bodies of capacitors, the moldings of the mixture of the major ingredient and additive in finely divided form are sintered in a reductive or neutral atmosphere and then reheated at a lower temperature in an oxidative atmosphere. The sintering temperature can be so low (typically from 1050.degree. to 1200.degree. C.) that the moldings can be co-sintered with base metal electrodes buried therein without difficulties encountered heretofore.