摘要:
According to one embodiment, a template substrate includes a substrate and a mask. The substrate includes a mesa region formed in a central portion of an upper surface of the substrate. The mesa region is configured to protrude more than a region of the substrate around the mesa region. An impurity is introduced into an upper layer portion of a partial region of a peripheral portion of the mesa region. The mask film is provided on the upper surface of the substrate.
摘要:
According to one embodiment, an imprint mask includes a quartz plate. The quartz plate has a plurality of concave sections formed in part of an upper surface on the quartz plate, and impurities are contained in a portion between the concave sections in the quartz plate.
摘要:
According to one embodiment, a template substrate includes a substrate and a mask. The substrate includes a mesa region formed in a central portion of an upper surface of the substrate. The mesa region is configured to protrude more than a region of the substrate around the mesa region. An impurity is introduced into an upper layer portion of a partial region of a peripheral portion of the mesa region. The mask film is provided on the upper surface of the substrate.
摘要:
A method of manufacturing an exposure mask includes generating or preparing flatness variation data relating to a mask blanks substrate to be processed into an exposure mask, the flatness variation data being data relating to change of flatness of the mask blank substrate caused when the mask blank substrate is chucked by a chuck unit of an exposure apparatus, generating position correction, data of a pattern to be drawn on the mask blanks substrate based on the flatness variation data such that a mask pattern of the exposure mask comes to a predetermined position in a state that the exposure mask is chucked by the chuck unit, and drawing a pattern on the mask blanks substrate, the drawing the pattern including drawing the pattern with correcting a drawing position of the pattern and inputting drawing data corresponding to the pattern and the position correction data into a drawing apparatus.
摘要:
There is disclosed a manufacturing method for exposure mask, which comprises acquiring a first information showing surface shape of surface of each of a plurality of mask substrates, and a second information showing the flatness of the surface of each of mask substrates before and after chucked on a mask stage of an exposure apparatus, forming a corresponding relation of each mask substrate, the first information and the second information, selecting the second information showing a desired flatness among the second information of the corresponding relation, and preparing another mask substrate having the same surface shape as the surface shape indicated by the first information in the corresponding relation with the selected second information, and forming a desired pattern on the above-mentioned another mask substrate.
摘要:
A pattern verification-test method according to an embodiment of the present invention includes: deriving an illumination condition at a verification-test subject position in a photomask surface of a mask pattern as a verification or a test subject based on the verification-test subject position and illumination condition information about a distribution of an illumination condition in a photomask surface of exposure light incident on the mask pattern, performing lithography simulation on the mask pattern based on the derived illumination condition and the mask pattern, and verifying or testing the mask pattern based on a result of the lithography simulation.
摘要:
This invention discloses a photomask manufacturing method. A pattern dimensional map is generated by preparing a photomask in which a mask pattern is formed on a transparent substrate, and measuring a mask in-plane distribution of the pattern dimensions. A transmittance correction coefficient map is generated by dividing a pattern formation region into a plurality of subregions, and determining a transmittance correction coefficient for each of the plurality of subregions. The transmittance correction value of each subregion is calculated on the basis of the pattern dimensional map and the transmittance correction coefficient map. The transmittance of the transparent substrate corresponding to each subregion is changed on the basis of the transmittance correction value.
摘要:
A reflective mask comprising: a reflective layer that is arranged on a surface on a side on which EUV light is irradiated and reflects the EUV light; a buffer layer containing Cr that is arranged on a side of the reflective layer on which the EUV light is irradiated and covers an entire surface of the reflective layer; and a non-reflective layer that is arranged on a side of the buffer layer on which the EUV light is irradiated and in which an absorber that absorbs the irradiated EUV light is arranged in a position corresponding to a mask pattern to be reduced and transferred onto a wafer.
摘要:
A method of manufacturing an exposure mask includes generating or preparing flatness variation data relating to a mask blanks substrate to be processed into an exposure mask, the flatness variation data being data relating to change of flatness of the mask blank substrate caused when the mask blank substrate is chucked by a chuck unit of an exposure apparatus, generating position correction, data of a pattern to be drawn on the mask blanks substrate based on the flatness variation data such that a mask pattern of the exposure mask comes to a predetermined position in a state that the exposure mask is chucked by the chuck unit, and drawing a pattern on the mask blanks substrate, the drawing the pattern including drawing the pattern with correcting a drawing position of the pattern and inputting drawing data corresponding to the pattern and the position correction data into a drawing apparatus.
摘要:
According to an aspect of the invention, there is provided a method for selecting a photomask substrate, including dividing a chip area scheduled to be arranged on the photomask substrate regarding a specific transfer pattern layer into a management pattern area in which an element pattern changed in shape by birefringence of the photomask substrate is arranged, and an area other than the management pattern area, setting a standard value of a size of birefringence of an area in which the management pattern area of the photomask substrate is arranged, inspecting the size of the birefringence of each of a plurality of photomask substrate candidates, and selecting a photomask substrate, in which the size of the birefringence satisfies the standard value, as a photomask substrate of the specific transfer pattern layer from the plurality of photomask substrate candidates.