Abstract:
The ratio between the amount of exhaust gas recirculated by a high-pressure EGR device and the amount of exhaust gas recirculated by a low-pressure EGR device (mixture ratio) is controlled based on the operating state of an internal combustion engine and the correlation between the fuel consumption rate of the internal combustion engine and the mixture ratio. Thus, high-pressure EGR and low-pressure EGR are performed at the mixture ratio (optimum mixture ratio) at which the fuel consumption rate is at or around the minimum value.
Abstract:
A variable-geometry turbocharger and a low-pressure EGR passage are provided. The variable-geometry turbocharger includes a turbine provided in an exhaust passage, and a compressor provided in an intake passage. In the variable-geometry turbocharger, the cross sectional area of a path through which exhaust gas passes is adjusted by adjusting the opening degree of a nozzle vane. The low-pressure EGR passage connects the area of the exhaust passage downstream of the turbine to the area of the intake passage upstream of the compressor. The EGR gas is recirculated to the intake passage through the low-pressure EGR passage. The EGR gas is directed to flow through the low-pressure EGR passage when a vehicle is decelerating or when fuel supply to the internal combustion engine is cut off. The pressure in the intake passage is adjusted toward a target pressure by adjusting the opening degree of the nozzle vane when the EGR gas flows through the low-pressure EGR passage.
Abstract:
The present invention provides an innovative material which has properties which cannot be achieved with conventional materials, i.e., having satisfactory high corrosion resistance and high strength in very severe corrosive conditions, for example, a 75% sulfuric acid (H2SO4) aqueous solution (180° C.) in addition to high strength at high temperatures and high toughness at low temperatures, and provides a method for effectively manufacturing the innovative material. A worked molybdenum-alloy material, subjected to nitriding, which has high corrosion resistance, high strength, and high toughness, includes fine nitride particles formed by subjecting a nitride-forming-metal element dissolved to form a solid solution in an untreated worked molybdenum-alloy material to internal nitriding, the fine nitride particles being dispersed inside the worked molybdenum-alloy material subjected to nitriding; and a molybdenum nitride layer formed by subjecting a worked structure or a recovered structure at the surface of the untreated worked molybdenum-alloy material to external nitriding, the molybdenum nitride layer being provided at the surface of the worked molybdenum-alloy material subjected to nitriding. A method for manufacturing a worked molybdenum-alloy material subjected to nitriding includes the steps of subjecting an untreated worked alloy material in which at least any one of titanium, zirconium, hafnium, vanadium, niobium, and tantalum is dissolved to form a solid solution to multi-step internal nitriding treatment including a stepwise increase of the treatment temperature, and then subjecting the worked alloy material to external nitriding treatment.
Abstract:
A variable-nozzle type turbo charger capable of temporarily decreasing the back pressure of the engine at the start of the engine. The turbo charger is equipped with a plurality of nozzle vanes of which the opening degree can be changed and are capable of changing the areas of turbine nozzles at the time when exhaust gases of an engine are guided from said turbine nozzles formed among said nozzle vanes to a turbine rotor, wherein an actuator that adjusts the opening degree of the nozzle vanes is so controlled that the areas of the turbine nozzles are larger than a minimum area for a predetermined period of time from the start of the engine, and, after the passage of said predetermined period of time, said actuator is so controlled that the areas of said turbine nozzles become the minimum area to promote the warming-up of the engine when the water temperature of the engine or the engine load is smaller than a predetermined value.
Abstract:
The ratio between the amount of exhaust gas recirculated by a high-pressure EGR device and the amount of exhaust gas recirculated by a low-pressure EGR device (mixture ratio) is controlled based on the operating state of an internal combustion engine and the correlation between the fuel consumption rate of the internal combustion engine and the mixture ratio. Thus, high-pressure EGR and low-pressure EGR are performed at the mixture ratio (optimum mixture ratio) at which the fuel consumption rate is at or around the minimum value.
Abstract:
An exhaust gas recirculation device includes a turbocharger (5) having a turbine (5b) on an exhaust pipe (4) and a compressor (5a) on an intake pipe (3), a low-pressure EGR passage (31) connecting the exhaust pipe (4) downstream of the turbine (5b) and the intake pipe (3) upstream of the compressor (5a), and a filter (13) provided on the exhaust pipe (4) downstream of the turbine (5b). In the device, an exhaust throttle valve (19) is disposed on the exhaust pipe (4) that is downstream of the filter (13) and that is upstream of a site of connection with the low-pressure EGR passage (31).
Abstract:
An EGR system includes a high-pressure EGR passage that provides communication between an exhaust pipe, at a portion upstream of a turbine of a turbocharger, and an intake pipe, at a portion downstream of a compressor; a low-pressure EGR passage that provides communication between the exhaust pipe, at a portion downstream of the turbine, and the intake passage, at a portion upstream of the compressor; and an exhaust gas catalyst provided upstream of a position at which the low-pressure EGR passage is connected to the exhaust pipe. When an internal combustion engine is in the transitional state from the low-load operating state to the high-load operating state (S303), if incomplete combustion is detected in the internal combustion engine (S304) and the bed temperature of the exhaust gas catalyst is lower than the reference temperature (S305), the high-pressure EGR gas amount is made larger than the prescribed high-pressure EGR gas amount determined based on the operating state of the internal combustion engine (S306). Thus, an excessive decrease in the intake air temperature is suppressed, and therefore occurrence of incomplete combustion is suppressed.
Abstract:
In an inner link rank 9 of a silent chain before pre-stress is applied, hole pitches of outer link plates 37 are shortened as compared to those of inner link plates 38 and 39 (P 17
Abstract:
The present invention provides a worked molybdenum-alloy material that can be used at higher temperatures than at least temperatures at which known TZM alloys are used.A worked molybdenum-alloy material having high strength and high toughness includes at least one of carbide particles, oxide particles, and boride particles and fine nitride particles dispersed by internal nitriding of an untreated worked molybdenum-alloy material in which a nitride-forming-metal element is dissolved to form a solid solution in a molybdenum matrix and at least one of carbide particles, oxide particles, and boride particles is precipitated and dispersed. The worked molybdenum-alloy material is manufactured by subjecting a worked alloy material, which has a matrix composed of molybdenum, in which at least one of carbide particles, oxide particles, and boride particles is precipitated and dispersed and in which at least one of titanium, zirconium, hafnium, vanadium, niobium, and tantalum is dissolved to form a solid solution, to multi-step internal nitriding treatment including a stepwise increase of the treatment temperature.
Abstract:
A refractory metal-based alloy material exhibiting high strength and high recrystallization temperature includes a worked material obtained by carburizing, while using a carbon source and coexisted oxygen, a material containing nitride particles of a solute metal dispersed and precipitated in a matrix by multi-step nitriding of a worked alloy material containing one metal selected from Mo, W, and Cr as a matrix and at least one element selected from Ti, Zr, Hf, V, Nb, and Ta as the solute metal, wherein the worked material contains carbon segregated at grain boundaries as a result of the carburizing and oxide particles converted from the nitride particles.