Abstract:
A method includes holding in a memory of a communication terminal multiple predefined vectors, each including signal autocorrelation values computed for a respective Doppler shift. A signal is received, and empirical autocorrelation values are calculated for the received signal. An actual Doppler shift of the received signal is estimated by selecting, from among the predefined vectors, a vector whose autocorrelation values best match the empirical autocorrelation values of the received signal.
Abstract:
A method for communication includes, in a transmitter having a first number of transmit antenna ports, setting an upper limit on a second number of spatial layers to be used by the transmitter to be less than the first number. An actual number of the spatial layers, which does not exceed the upper limit, is allocated for transmission to a given receiver. One or more streams of modulated symbols are mapped onto the allocated actual number of the spatial layers. The actual number of the spatial layers are transmitted from the transmitter to the given receiver.
Abstract:
A method includes, in a receiver, receiving a signal carrying data using multiple antennas, so as to produce multiple respective input signals. The input signals are divided into two or more subsets. The input signals within each of the subsets are combined in a first diversity-combining stage, to produce respective intermediate signals. In a second diversity-combining stage, the intermediate signals are combined to produce an output signal. The output signal is decoded so as to reconstruct the data carried by the received signal.
Abstract:
A method includes, in a mobile communication terminal, receiving from at least first and second base stations, which cooperate in a coordinated transmission scheme, signals that are transmitted over respective first and second communication channels. Respective channel measures are calculated for the communication channels based on the received signals. First and second feedback data, which are indicative of the respective channel measures of the first and second communication channels, are formulated such that the first feedback data has a first data size and the second feedback data has a second data size, different from the first data size. The first and second feedback data are transmitted from the mobile communication terminal to at least one of the base stations.
Abstract:
A method for communication includes receiving at a receiver from a group of two or more transmitters multiple Radio Frequency (RF) transmission beams that alternate in time and space and include at least first and second transmission beams. The method identifies that the first transmission beam causes interference to reception of the second transmission beam. Feedback is sent from the receiver to one or more of the transmitters, so as to cause the transmitters to attenuate the first transmission beam during transmission of the second transmission beam.
Abstract:
A method for communication includes configuring a communication system that includes a transmitter and a receiver with first precoding matrices for mapping up to N data streams onto N transmit antenna ports of the transmitter. Each of at least some of the first precoding matrices are derived from respective second and third precoding matrices. The second and third precoding matrices are configured for mapping data onto respective numbers of transmit antenna ports that are less than N. The data streams are mapped onto the N transmit antenna ports using a precoding scheme based on one of the first precoding matrices. The mapped data streams are transmitted over the N transmit antenna ports from the transmitter to the receiver.
Abstract:
A method includes, in a receiver, computing soft decoding metrics for decoding a received signal. The soft decoding metrics are stored in compressed form in a memory buffer. The soft decoding metrics in the compressed form are retrieved from the memory buffer, the retrieved soft decoding metrics are decompressed, and the received signal is decoded using the decompressed soft decoding metrics.
Abstract:
A method includes, in a receiver, computing soft decoding metrics for decoding a received signal. The soft decoding metrics are stored in compressed form in a memory buffer. The soft decoding metrics in the compressed form are retrieved from the memory buffer, the retrieved soft decoding metrics are decompressed, and the received signal is decoded using the decompressed soft decoding metrics.
Abstract:
A method includes holding in a receiver a definition of a codebook including precoding matrices, and a definition of multiple sub-codebooks including different respective subsets of the precoding matrices in the codebook. A sub-codebook is selected in coordination with a transmitter, for use in a given time interval or frequency range. A Multiple-Input Multiple-Output (MIMO) signal that is transmitted from the transmitter is received. Feedback is generated in the receiver based on the received MIMO signal. The feedback is indicative of one or more preferred precoding matrices, which are chosen from the selected sub-codebook and which are to be used in precoding subsequent MIMO signals in respective partitions of the given time interval or frequency range. The feedback is transmitted from the receiver to the transmitter.
Abstract:
A device includes a receiver, a determiner, and a demodulator. The receiver is configured to receive from a base station a reference signal having a power level such that a sum of the power level and a processing gain of a channel estimator of the device corresponds to a predetermined demodulation penalty for the device. The determiner is configured to determine the power level. The demodulator is configured to demodulate a data signal received from the base station based on the power level and a channel estimate generated based on the reference signal.