Abstract:
Techniques for diamond nucleation control for thin film processing are disclosed. In one particular embodiment, the techniques may be realized as a method for generating a plasma having a plurality of ions; depositing a plurality of diamond nucleation centers on a substrate with the ions in the plasma using an extraction plate having at least one gap, wherein the plasma ions pass through the at least one gap in the extraction plate to generate a focused ion beam to deposit the plurality of diamond nucleation centers; and controlling the growth of a continuous diamond film from the diamond nucleation centers on the substrate by controlling at least one of a temperature around the substrate, a temperature of the plasma, a pressure around the substrate, and a concentration of the ions in the plasma.
Abstract:
ZnTe is implanted with a first species selected from Group III and a second species selected from Group VII. This may be preformed using sequential implants, implants of the first species and second species that are at least partially simultaneous, or a molecular species comprising an atom selected from Group III and an atom selected from Group VII. The implants may be performed at an elevated temperature in one instance between 70° C. and 800° C.
Abstract:
Methods of affecting a material's properties through the implantation of ions, such as by using a plasma processing apparatus with a plasma sheath modifier. In this way, properties such as resistance to chemicals, adhesiveness, hydrophobicity, and hydrophilicity, may be affected. These methods can be applied to a variety of technologies. In some cases, ion implantation is used in the manufacture of printer heads to reduce clogging by increasing the materials hydrophobicity. In other embodiments, MEMS and NEMS devices are produced using ion implantation to change the properties of fluid channels and other structures. In addition, ion implantation can be used to affect a material's resistance to chemicals, such as acids.
Abstract:
Methods of affecting a material's properties through the implantation of ions, such as by using a plasma processing apparatus with a plasma sheath modifier. In this way, properties such as resistance to chemicals, adhesiveness, hydrophobicity, and hydrophilicity, may be affected. These methods can be applied to a variety of technologies. In some cases, ion implantation is used in the manufacture of printer heads to reduce clogging by increasing the materials hydrophobicity. In other embodiments, MEMS and NEMS devices are produced using ion implantation to change the properties of fluid channels and other structures. In addition, ion implantation can be used to affect a material's resistance to chemicals, such as acids.
Abstract:
An ion implantation system may comprise a plasma source for providing a plasma and a workpiece holder arranged to receive a bias with respect to the plasma to attract ions across a plasma sheath toward the substrate. The system may also include an extraction plate arrangement comprising a multiplicity of different apertures each arranged to provide an ion beam having ions distributed over a range of angles of incidence on the workpiece, wherein a first ion beam extracted from a first aperture has a first beam profile that differs from a second ion beam extracted from a second aperture.
Abstract:
An ion implantation system may comprise a plasma source for providing a plasma and a workpiece holder arranged to receive a bias with respect to the plasma to attract ions across a plasma sheath toward the substrate. The system may also include an extraction plate arrangement comprising a multiplicity of different apertures each arranged to provide an ion beam having ions distributed over a range of angles of incidence on the workpiece, wherein a first ion beam extracted from a first aperture has a first beam profile that differs from a second ion beam extracted from a second aperture.
Abstract:
A time-of-flight (TOF) ion sensor system for monitoring an angular distribution of ion species having an ion energy and incident on a substrate includes a drift tube wherein the ion sensor system is configured to vary an angle of the drift tube with respect to a plane of the substrate. The drift tube may have a first end configured to receive a pulse of ions from the ion species wherein heavier ions and lighter ions of the pulse of ions arrive in packets at a second end of the drift tube. An ion detector may be disposed at the second end of the ion sensor, wherein the ion detector is configured to detect the packets of ions derived from the pulse of ions and corresponding to respective different ion masses.
Abstract:
A plasma processing apparatus includes a process chamber, a platen for supporting a workpiece, a source configured to generate a plasma in the process chamber, and an insulating modifier. The insulating modifier has a gap, and a gap plane, where the gap plane is defined by portions of the insulating modifier closest to the sheath and proximate the gap. A gap angle is defined as the angle between the gap plane and a plane defined by the front surface of the workpiece. Additionally, a method of having ions strike a workpiece is disclosed, where the range of incident angles of the ions striking the workpiece includes a center angle and an angular distribution, and where the use of the insulating modifier creates a center angle that is not perpendicular to the workpiece.
Abstract:
A plasma processing apparatus comprises a plasma source configured to produce a plasma in a plasma chamber, such that the plasma contains ions for implantation into a workpiece. The apparatus also includes a focusing plate arrangement having an aperture arrangement configured to modify a shape of a plasma sheath of the plasma proximate the focusing plate such that ions exiting an aperture of the aperture arrangement define focused ions. The apparatus further includes a processing chamber containing a workpiece spaced from the focusing plate such that a stationary implant region of the focused ions at the workpiece is substantially narrower that the aperture. The apparatus is configured to create a plurality of patterned areas in the workpiece by scanning the workpiece during ion implantation.
Abstract:
A plasma processing apparatus includes a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate a plasma in the process chamber having a plasma sheath adjacent to the front surface of the workpiece, and an insulating modifier. The insulating modifier has a gap, and a gap plane, where the gap plane is defined by portions of the insulating modifier closest to the sheath and proximate the gap. A gap angle is defined as the angle between the gap plane and a plane defined by the front surface of the workpiece. Additionally, a method of having ions strike a workpiece is disclosed, where the range of incident angles of the ions striking the workpiece includes a center angle and an angular distribution, and where the use of the insulating modifier creates a center angle that is not perpendicular to the workpiece.