摘要:
An electrical interconnect structure on a substrate, which includes: a first low-k dielectric layer; a spin-on low k CMP protective layer that is covalently bonded to the first low-k dielectric layer; and a CVD deposited hardmask/CMP polish stop layer is provided. Electrical vias and lines can be formed in the first low k dielectric layer. The spin-on low k CMP protective layer prevents damage to the low k dielectric which can be created due to non-uniformity in the CMP process from center to edge or in areas of varying metal density. The thickness of the low-k CMP protective layer can be adjusted to accommodate larger variations in the CMP process without significantly impacting the effective dielectric constant of the structure.
摘要:
An electrical interconnect structure on a substrate, which includes: a first low-k dielectric layer; a spin-on low k CMP protective layer that is covalently bonded to the first low-k dielectric layer; and a CVD deposited hardmask/CMP polish stop layer is provided. Electrical vias and lines can be formed in the first low k dielectric layer. The spin-on low k CMP protective layer prevents damage to the low k dielectric which can be created due to non-uniformity in the CMP process from center to edge or in areas of varying metal density. The thickness of the low-k CMP protective layer can be adjusted to accommodate larger variations in the CMP process without significantly impacting the effective dielectric constant of the structure.
摘要:
A structure useful for electrical interconnection comprises a substrate; a plurality of porous dielectric layers disposed on the substrate; an etch stop layer disposed between a first of the dielectric layers and a second of the dielectric layers; and at least one thin, tough, non-porous dielectric layer disposed between at least one of the porous dielectric layers and the etch stop layer. A method for forming the structure comprising forming a multilayer stack of porous dielectric layers on the substrate, the stack including the plurality of porous dielectric layers, and forming a plurality of patterned metal conductors within the multilayer stack. Curing of the multilayer dielectric stack may be in a single cure step in a furnace. The application and hot plate baking of the individual layers of the multi layer dielectric stack may be accomplished in a single spin-coat tool, without being removed, to fully cure the stack until all dielectric layers have been deposited.
摘要:
A dual damascene interconnect structure having a patterned multilayer of spun-on dielectrics on a substrate is provided. The structure includes: a patterned multilayer of spun-on dielectrics on a substrate, including: a cap layer; a first non-porous via level low-k dielectric layer having thereon metal via conductors with a bottom portion and sidewalls; an etch stop layer; a first porous line level low-k dielectric layer having thereon metal line conductors with a bottom portion and sidewalls; a polish stop layer over the first porous line level low-k dielectric; a second thin non-porous via level low-k dielectric layer for coating and planarizing the line and via sidewalls; and a liner material between the metal via and line conductors and the dielectric layers. Also provided is a method of forming the dual damascene interconnect structure.
摘要:
An electrical interconnect structure on a substrate, includes a first porous dielectric layer with surface region from which a porogen has been removed; and an etch stop layer disposed upon the first porous dielectric layer so that the etch stop layer extends to partially fill pores in the surface region of the first porous dielectric layer from which the porogen has been removed, thus improving adhesion during subsequent processing. The porogen may be removed from the surface region by heating, and in particular by hot plate baking. A second porous dielectric layer, which may have the same composition as the first porous dielectric layer, may be formed over the etch stop layer. Electrical vias and lines may be formed in the first and second porous dielectric layer, respectively. The layers may be part of a multilayer stack, wherein all of the layers are cured simultaneously in a spin application tool porous dielectric layer.
摘要:
A dual damascene interconnect structure having a patterned multilayer of spun-on dielectrics on a substrate is provided. The structure includes: a patterned multilayer of spun-on dielectrics on a substrate, including: a cap layer; a first non-porous via level low-k dielectric layer having thereon metal via conductors with a bottom portion and sidewalls; an etch stop layer; a first porous low-k line level dielectric layer having thereon metal line conductors with a bottom portion and sidewalls; a polish stop layer over the first porous low-k dielectric; a second thin non-porous low-k dielectric layer for coating and planarizing the line and via sidewalls; and a liner material between the metal via and line conductors and the dielectric layers. Also provided is a method of forming the dual damascene interconnect structure.
摘要:
A dual damascene interconnect structure having a patterned multilayer of spun-on dielectrics on a substrate is provided. The structure includes: a patterned multilayer of spun-on dielectrics on a substrate, including: a cap layer; a first non-porous via level low-k dielectric layer having thereon metal via conductors with a bottom portion and sidewalls; an etch stop layer; a first porous low-k line level dielectric layer having thereon metal line conductors with a bottom portion and sidewalls; a polish stop layer over the first porous low-k dielectric; a second thin non-porous low-k dielectric layer for coating and planarizing the line and via sidewalls; and a liner material between the metal via and line conductors and the dielectric layers. Also provided is a method of forming the dual damascene interconnect structure.
摘要:
An electrical interconnect structure on a substrate, includes a first porous dielectric layer with surface region from which a porogen has been removed; and an etch stop layer disposed upon the first porous dielectric layer so that the etch stop layer extends to partially fill pores in the surface region of the first porous dielectric layer from which the porogen has been removed, thus improving adhesion during subsequent processing. The porogen may be removed from the surface region by heating, and in particular by hot plate baking. A second porous dielectric layer, which may have the same composition as the first porous dielectric layer, may be formed over the etch stop layer. Electrical vias and lines may be formed in the first and second porous dielectric layer, respectively. The layers may be part of a multilayer stack, wherein all of the layers are cured simultaneously in a spin application tool porous dielectric layer.