摘要:
Provided are a DNA PCR module and a multiple PCR system using the same. More particularly, provided are a DNA PCR module with a combined PCR thermal cycler and PCR product detector, and a multiple PCR system using the same.
摘要:
Provided is a microchip unit, including a microchip on which a plurality of micro-channels are formed, a housing disposed below the microchip to fix the microchip; and at least two injecting and sealing elements having through-holes corresponding to inlets of the microchip. The injecting and sealing elements are vertically fixed on the top of the housing and slide in a horizontal direction from a first location to a second location and vice versa. The through-holes are aligned with inlets of the microchip so that a reaction solution can be injected through the through-holes when the injecting and sealing elements are placed at the first location. The inlets of the microchip are sealed by elastic members formed on bottom surfaces of the injecting and sealing elements when the injecting and sealing elements are placed at the second location.
摘要:
A real time polymerase chain reaction (“PCR”) monitoring apparatus includes, a microchip-type PCR tube that has a PCR solution-containing PCR chamber, a micro-heater, a detection unit detecting a PCR product signal based on the PCR solution, a plurality of modules, each of which includes the abovementioned elements in addition to a cooling fan and a control unit controlling the micro-heater and the cooling fan to adjust the temperature of the PCR chamber, a base instrument that comprises a power supply unit connected to the modules and a data communication unit connected to the control unit of each of the modules, and a display unit displaying data from the data communication unit, wherein the control unit of each of the modules independently controls at least one of both the detection unit and the temperature of the PCR chamber of the PCR tube in each of the modules.
摘要:
Provided are a polymerase chain reaction (PCR) module and a PCR system including the same. The PCR module includes: a detachable PCR chip including a PCR chamber unit in which a PCR solution is accommodated; a heater unit for heating the PCR solution in the PCR chip with a preset temperature; a detecting unit for detecting a PCR signal of the PCR solution; a PCR chip installation unit for mounting/detaching the PCR chip using a one-touch method, in which the heater unit is adhered to the PCR chip with a predetermined pressure when mounting the PCR chip and the heater unit is separated from the PCR chip when detaching the PCR chip; and a housing covering at least the heater unit and the detecting unit so that they are not exposed to the outside.
摘要:
Provided is a microfluidic device including at least one inlet, at least one outlet, and a microchannel connecting the inlet and the outlet. The microfluidic device includes two or more electromagnets disposed on sidewalls of the microchannel and oriented in a predetermined direction with respect to the direction in which the microchannel extends.
摘要:
Provided are a PCR module and a multiple PCR system using the same. More particularly, provided are a PCR module with a combined PCR thermal cycler and PCR product detector, and a multiple PCR system using the same.
摘要:
Provided are a DNA PCR module and a multiple PCR system using the same. More particularly, provided are a DNA PCR module with a combined PCR thermal cycler and PCR product detector, and a multiple PCR system using the same.
摘要:
Provided are a real-time PCR monitoring apparatus and method. The real-time PCR monitoring apparatus includes a microchip-type PCR tube that has a PCR solution-containing PCR chamber, a micro-heater that applies heat to the PCR chamber of the PCR tube, a detection unit that detects a PCR product signal based on the amount of a PCR product of the PCR solution, a plurality of modules, each of which includes a cooling fan for lowering the inside air temperature and a control unit for adjusting the temperature of the PCR chamber of the PCR tube by controlling the micro-heater and the cooling fan, and receives the PCR tube, the micro-heater, and the detection unit, a base instrument that includes a power supply unit electrically connected to the modules for power supply and a data communication unit electrically connected to the modules for data communication with the control unit of each of the modules, and a display unit that displays data received from the data communication unit, wherein the control unit of each of the modules independently controls at least one of both the detection unit and the temperature of the PCR chamber of the PCR tube received in each of the modules. Therefore, co-amplification of different samples at different temperature conditions can be carried out and monitored in real time.
摘要:
Provided is a fluid mixing device which produces a series of solutions with a concentration gradient. The fluid mixing device includes: a plurality of first channels disposed parallel to each other on a layer, and into which an equal amount of diluent flows from its upstream; a plurality of second channels formed perpendicular to the first channels on an adjacent layer to the layer on which the first channels are formed, and into which an equal amount of sample solution flows from its upstream; and via holes formed at at least one intersection between each of the first channel and a plurality of second channels so that a predetermined amount of sample solution flows from the second channels into corresponding first channels, wherein a series of solutions with different concentrations is produced in the first channels depending on the amount of sample solution that flows into the first channels through the via holes. Thus, a series of solutions with different concentrations is output from the first channels.
摘要:
Provided is a fluid mixing device which produces a series of solutions with a concentration gradient. The fluid mixing device includes: a plurality of first channels disposed parallel to each other on a layer, and into which an equal amount of diluent flows from its upstream; a plurality of second channels formed perpendicular to the first channels on an adjacent layer to the layer on which the first channels are formed, and into which an equal amount of sample solution flows from its upstream; and via holes formed at at least one intersection between each of the first channel and a plurality of second channels so that a predetermined amount of sample solution flows from the second channels into corresponding first channels, wherein a series of solutions with different concentrations is produced in the first channels depending on the amount of sample solution that flows into the first channels through the via holes. Thus, a series of solutions with different concentrations is output from the first channels.