Abstract:
An optical coupling structure that interfaces between optical devices mounted on a substrate and optical waveguides formed in the substrate. A manufacturing method includes preparing a wafer formed on an inorganic solid material on a dicing tape and cutting the back surface of the wafer to form substantially angled portions using a dicing blade having a point angle. The dicing tape is stripped from the wafer and the wafer is separated at the valleys between the substantially angled portions to obtain an optical coupling element. The obtained optical coupling element is a three-dimensional polyhedral light-reflecting member having a mirror surface corresponding to a surface of the wafer. The obtained optical coupling element is inserted into a trench that opens, substantially perpendicular to an optical waveguide of an optical transmission substrate, in the main surface of the optical transmission substrate to provide a structure for optical coupling with the outside.
Abstract:
An optical coupling structure that interfaces between optical devices mounted on a substrate and optical waveguides formed in the substrate. A manufacturing method includes preparing a wafer formed on an inorganic solid material on a dicing tape and cutting the back surface of the wafer to form substantially angled portions using a dicing blade having a point angle. The dicing tape is stripped from the wafer and the wafer is separated at the valleys between the substantially angled portions to obtain an optical coupling element. The obtained optical coupling element is a three-dimensional polyhedral light-reflecting member having a mirror surface corresponding to a surface of the wafer. The obtained optical coupling element is inserted into a trench that opens, substantially perpendicular to an optical waveguide of an optical transmission substrate, in the main surface of the optical transmission substrate to provide a structure for optical coupling with the outside.
Abstract:
An optical coupling structure that interfaces between optical devices mounted on a substrate and optical waveguides formed in the substrate. A manufacturing method includes preparing a wafer formed on an inorganic solid material on a dicing tape and cutting the back surface of the wafer to form substantially angled portions using a dicing blade having a point angle. The dicing tape is stripped from the wafer and the wafer is separated at the valleys between the substantially angled portions to obtain an optical coupling element. The obtained optical coupling element is a three-dimensional polyhedral light-reflecting member having a mirror surface corresponding to a surface of the wafer. The obtained optical coupling element is inserted into a trench that opens, substantially perpendicular to an optical waveguide of an optical transmission substrate, in the main surface of the optical transmission substrate to provide a structure for optical coupling with the outside.
Abstract:
An apparatus includes a tool head configured for bonding to establish 100 or more electrical and mechanical connections between a silicon chip having a thickness of about 50 microns (μm) or smaller and a substrate, wherein 100 or more solder bumps set on a plurality of contacts on the silicon chip or a plurality of contacts on the substrate are melted by heating between the plurality of contacts of the silicon chip and the substrate, and wherein the melted solder bumps are solidified by cooling using forced convection of air flowing from around the silicon chip. The tool head includes a pyrolytic graphite sheet configured to be used in direct contact with the silicon chip, and having a thickness between about 75 μm and 125 μm.
Abstract:
A method for making a thermal interface structure which includes a carbon nanotube layer, in which the carbon nanotubes are oriented parallel to the direction of thermal transmission and metal layers provided on two edge surfaces of the carbon nanotube layer, the edge surfaces being perpendicular to the direction of the thermal transmission and located substantially parallel to the orientation direction at which edges of the carbon nanotubes are oriented.
Abstract:
Disclosed herein is a composite film comprising an organic polymer film; the organic polymer film having an elastic modulus of less than or equal to about 105 gigapascals when measured at room temperature; and a bundle of carbon fibers disposed in the organic polymer film; each bundle comprising a column and an end face; each bundle also having a longitudinal axis that is substantially parallel to the column and passes through the center of the column; the end face being fibrillated so as to have a surface area measured perpendicular to the longitudinal axis that is about 110 to about 250% greater than the surface area of a cross-section of the carbon fiber measured at the column.
Abstract:
A thermal interface structure includes a carbon nanotube layer, in which the carbon nanotubes are oriented parallel to the direction of thermal transmission and metal layers provided on two edge surfaces of the carbon nanotube layer, the edge surfaces being perpendicular to the direction of the thermal transmission and located substantially parallel to the orientation direction at which edges of the carbon nanotubes are oriented.
Abstract:
The present invention provides a thin film transistor structure in which at least a trench is formed in an insulating polymer film formed on a substrate. In the thin film transistor structure, a trench formed in the insulating polymer film accommodates a gate wiring constituted of a plurality of conductive layers. Provided also are a method of manufacturing the thin film transistor structure, and a display device including a thin film transistor array composed of the thin film transistors constituted as described above.
Abstract:
An organic light emitting diode display device includes a plurality of organic light emitting diode elements that are arranged in a matrix; a plurality of protective layers, each of the protective layers covering at least one of the organic light emitting diode elements; and a stress relaxation layer that is formed between the protective layers, for relaxing a stress caused by the protective layers. The stress relaxation layer may surround the protective layer. Moreover, the stress relaxation layer may be made of a shading material, and serve as a mask for forming the organic light emitting diode elements.
Abstract:
Optical device and color display unit to correct an angle of visibility, emphasize front brightness or diffusion degree, improve brightness and the performance of angle of visibility, and moreover improve the performance of chromaticity. An optical device is a film-like optical device for angle-correcting light toward a predetermined direction and of two materials whose refractive index difference is at least 0.1 or over, formed so that one material constitutes a plurality of light guide paths having total reflection at the boundary with the adjacent other material, in which the light guide paths are formed so that they are not arranged at equal intervals or they have different cross sections from each other and the ratio of the width or diameter of the light input portion of each of the light guide paths to the film thickness of an optical device is at least 1:10 or more.