Abstract:
A touch detecting device for a capacitive touch sensor that includes a plurality of sensing units aligned along a predetermined direction, includes a differential detecting module and a processing module. The differential detecting module is configured to detect a capacitance variation between each two adjacent ones of the sensing units so as to generate a sequence of capacitance variations. The processing module is configured to determine a number of transitions corresponding to a number of touched areas on the capacitive touch sensor, where the number of transitions is one or greater. Each of the transitions represents a change from one of a set of the capacitance variations that is positive to one of a succeeding set of the capacitance variations that is negative. A touch detecting method is also disclosed.
Abstract:
A method for fabricating a TFT array substrate including the following steps is provided. A substrate having a pixel region and a photosensitive region is provided. A first patterned conductive layer is formed on the substrate, wherein the first patterned conductive layer includes a gate electrode disposed in the pixel region and a first electrode disposed in the photosensitive region, and a photosensitive dielectric layer is formed on the first electrode. A gate insulation layer is formed to cover the gate electrode, the photosensitive dielectric layer and the first electrode. A patterned semiconductor layer is formed on the gate insulation layer above the gate electrode. A source electrode and a drain electrode are formed on the patterned semiconductor layer at two sides of the gate electrode, wherein the gate electrode, the source electrode, and the drain electrode constitute a TFT. A second electrode is formed on the photosensitive dielectric layer.
Abstract:
An optical sensor includes a silicon-rich dielectric photosensitive device and a read-out device. The silicon-rich dielectric photosensitive device includes a first electrode, a second electrode, and a photosensitive silicon-rich dielectric layer disposed therebetween. The photosensitive silicon-rich dielectric layer includes a plurality of nanocrystalline silicon crystals therein. The read-out device is electrically connected to the first electrode of the silicon-rich dielectric photosensitive device for reading out opto-electronic signals transmitted from the photo-sensitive silicon-rich dielectric layer.
Abstract:
A buffer layer for promoting electron mobility. The buffer layer comprises amorphous silicon layer (a-Si) and an oxide-containing layer. The a-Si has high enough density that the particles in the substrate are prevented by the a-Si buffer layer from diffusing into the active layer. As well, the buffer, having thermal conductivity, provides a good path for thermal diffusion during the amorphous active layer's recrystallization by excimer laser annealing (ELA). Thus, the uniformity of the grain size of the crystallized silicon is improved, and electron mobility of the TFT is enhanced.
Abstract:
A buffer layer for promoting electron mobility. The buffer layer comprises amorphous silicon layer (a-Si) and an oxide-containing layer. The a-Si has high enough density that the particles in the substrate are prevented by the a-Si buffer layer from diffusing into the active layer. As well, the buffer, having thermal conductivity, provides a good path for thermal diffusion during the amorphous active layer's recrystallization by excimer laser annealing (ELA). Thus, the uniformity of the grain size of the crystallized silicon is improved, and electron mobility of the TFT is enhanced.
Abstract:
A capacitance difference detecting method, comprising: (a) utilizing a voltage control unit to cooperate with a first capacitor to be detected and a second capacitor to be detected to generate a first voltage and a second voltage; and (b) computing a capacitance difference between the first capacitor to be detected and the second capacitor to be detected according to the first voltage, the second voltage and a parameter of the voltage control unit.
Abstract:
In one aspect of the present invention, a photovoltaic panel includes a substrate, a reflective layer formed on the substrate, a first conductive layer formed on the reflective layer, an active layer formed on the first conductive layer, and a second conductive layer formed on the active layer. The reflective layer has an index of refraction and a thickness such that the reflectance spectrum of the photovoltaic device for light incident on the substrate has a maximum in a selected wavelength range in the visible spectrum.
Abstract:
A photo detector is disclosed. The photo detector has a substrate, a semiconductor layer disposed on the substrate, an insulating layer covered on the semiconductor layer, an interlayer dielectric layer covered on the insulating layer, and two electrodes formed on a portion of the interlayer dielectric layer. The semiconductor layer has a first doping region, a second doping region, and an intrinsic region located between the first doping region and the second doping region. The interlayer dielectric layer has at least three holes to expose a portion of the insulating layer, a portion of the first doping region, and the second doping region. The electrodes are connected to the first doping region and the second doping region through two of the holes.
Abstract:
A photo detector is disclosed. The photo detector has a substrate, a semiconductor layer disposed on the substrate, an insulating layer covered on the semiconductor layer, an interlayer dielectric layer covered on the insulating layer, and two electrodes formed on a portion of the interlayer dielectric layer. The semiconductor layer has a first doping region, a second doping region, and an intrinsic region located between the first doping region and the second doping region. The interlayer dielectric layer has at least three holes to expose a portion of the insulating layer, a portion of the first doping region, and the second doping region. The electrodes are connected to the first doping region and the second doping region through two of the holes.
Abstract:
A method of inspecting the grain size of a polysilicon film. A substrate covered by an amorphous silicon layer is provided. Next, the amorphous silicon layer is annealed by a laser beam with a predetermined laser energy density to transfer it to a polysilicon layer. Thereafter, the polysilicon layer is measured by a spectrometer under a predetermined photon energy range to achieve an optical parameter. Finally, the optical parameter is quantized to achieve a determining index, thereby monitoring the grain size of the polysilicon layer.