Abstract:
A reactor including a reactor vessel and heat exchange tubes provided in the reactor vessel. The reactor vessel includes a tubesheet and is configured to receive a reaction fluid. The tubesheet has a first plate member configured to contact the reaction fluid and a second plate member configured to not contact the reaction fluid. Heat exchange tubes are provided in the reactor vessel and fixed to the first plate member. The heat exchange tubes are configured to receive a heat exchange medium. At least a portion of the first plate member configured to contact the reaction fluid is made of a metal that has a high corrosion-resistance against the reaction liquid, and the second plate member is made of a metal that has a low corrosion-resistance against the reaction liquid. The second plate member is detachably fixed to a remainder of the reactor vessel.
Abstract:
A reactor including a reactor vessel and heat exchange tubes provided in the reactor vessel. The reactor vessel includes a tubesheet and is configured to receive a reaction fluid. The tubesheet has a first plate member configured to contact the reaction fluid and a second plate member configured to not contact the reaction fluid. Heat exchange tubes are provided in the reactor vessel and fixed to the first plate member. The heat exchange tubes are configured to receive a heat exchange medium. At least a portion of the first plate member configured to contact the reaction fluid is made of a metal that has a high corrosion-resistance against the reaction liquid, and the second plate member is made of a metal that has a low corrosion-resistance against the reaction liquid. The second plate member is detachably fixed to a remainder of the reactor vessel.
Abstract:
Urea is prepared by reacting ammonia and carbon dioxide in an apparatus comprising a vertical condensation and synthesis column and a stripper, to provide a urea synthesis solution comprising urea, unreacted ammonia, unreacted carbon dioxide and water. The urea synthesis solution is transferred from the top of the vertical condensation and synthesis column to the top of a stripper. Carbon dioxide is introduced into the bottom of the stripper and contacted with the urea synthesis solution, thereby separating the unreacted ammonia and the unreacted carbon dioxide from the urea, and providing a mixed gas comprising ammonia, carbon dioxide and water. The mixed gas is transferred into the bottom of the vertical condensation and synthesis column, where it is reacted with liquid ammonia injected into the bottom and a middle of the vertical condensation and synthesis column. The mixed gas and liquid ammonia are condensed and react to form urea, Uncondensed gases are absorbed in an absorbing medium, which is subsequently recycled to the bottom of the vertical condensation and synthesis column.
Abstract:
A reactor including a reactor vessel and heat exchange tubes provided in the reactor vessel. The reactor vessel includes a tubesheet and is configured to receive a reaction fluid. The tubesheet has a first plate member configured to contact the reaction fluid and a second plate member configured to not contact the reaction fluid. Heat exchange tubes are provided in the reactor vessel and fixed to the first plate member. The heat exchange tubes are configured to receive a heat exchange medium. At least a portion of the first plate member configured to contact the reaction fluid is made of a metal that has a high corrosion-resistance against the reaction liquid, and the second plate member is made of a metal that has a low corrosion-resistance against the reaction liquid. The second plate member is detachably fixed to a remainder of the reactor vessel.
Abstract:
Urea is prepared by reacting ammonia and carbon dioxide in an apparatus comprising a vertical condensation and synthesis column and a stripper, to provide a urea synthesis solution comprising urea, unreacted ammonia, unreacted carbon dioxide and water. The urea synthesis solution is transferred from the top of the vertical condensation and synthesis column to the top of a stripper. Carbon dioxide is introduced into the bottom of the stripper and contacted with the urea synthesis solution, thereby separating the unreacted ammonia and the unreacted carbon dioxide from the urea, and providing a mixed gas comprising ammonia, carbon dioxide and water. The mixed gas is transferred into the bottom of the vertical condensation and synthesis column, where it is reacted with liquid ammonia injected into the bottom and a middle of the vertical condensation and synthesis column. The mixed gas and liquid ammonia are condensed and react to form urea. Uncondensed gases are absorbed in an absorbing medium, which is subsequently recycled to the bottom of the vertical condensation and synthesis column.
Abstract:
A reactor including a reactor vessel and heat exchange tubes provided in the reactor vessel. The reactor vessel includes a tubesheet and is configured to receive a reaction fluid. The tubesheet has a first plate member configured to contact the reaction fluid and a second plate member configured to not contact the reaction fluid. Heat exchange tubes are provided in the reactor vessel and fixed to the first plate member. The heat exchange tubes are configured to receive a heat exchange medium. At least a portion of the first plate member configured to contact the reaction fluid is made of a metal that has a high corrosion-resistance against the reaction liquid, and the second plate member is made of a metal that has a low corrosion-resistance against the reaction liquid. The second plate member is detachably fixed to a remainder of the reactor vessel.
Abstract:
A voltage conversion mask signal generation circuit generates a first main signal and a first mask signal by converting an output signal of the first transistor to a low-side voltage, and generating a second main signal and a second mask signal by converting an output signal of the second transistor to a low-side voltage. A mask signal generation circuit generating a third mask signal with higher sensitivity than the first and second mask signals with respect to a fluctuation in the high-side reference potential. A mask logical circuit generating a fourth mask signal by performing a AND operation between the first mask signal and the second mask signal, and masking the first and second main signals with the third and fourth mask signals; and a SR flip flop circuit generating the output signal from the masked first and second main signals.
Abstract:
A power semiconductor device comprises: high side and low side switching elements; high side and low side drive circuits; a bootstrap capacitor supplying a drive voltage to the high side drive circuit and having a first terminal connected to a connection point between the high side switching element and the low side switching element and a second terminal connected to a power supply terminal of the high side drive circuit; a bootstrap diode having an anode connected to a power supply and a cathode connected to the second terminal and supplying a current from the power supply to the second terminal; a floating power supply; and a bootstrap compensation circuit supplying a current from the floating power supply to the second terminal, when the high side drive circuit turns ON the high side switching element and the low side drive circuit turns OFF the low side switching element.
Abstract:
In a camera module 1 of the present invention, a mechanical shutter 2 is provided above a top surface of a lens unit 3, and a protrusion section formed to an end of a lens 31 is held in a depression section formed on a back surface of the mechanical shutter 2. With the arrangement, it is possible to cause the camera module 1 employing the mechanical shutter 2 to be smaller and thinner at the same time.
Abstract:
This invention provides a hollow fiber membrane module which can reduce pressure loss in discharging water within a module and can reduce operating power. A hollow fiber membrane bundle comprising a plurality of numbers of hollow fiber membranes are disposed within a cylindrical case having in its side face an opening part for the inflow/outflow of water, and the end of the hollow fiber membrane bundle is fixed by bonding at a position which is located in the axial direction of the cylindrical case at an outer position than the position of the opening part for the inflow/outflow of water on the side face of the cylindrical case. The hollow fiber membrane module is characterized in that a distribution cylinder provided with distribution holes is provided inward with respect to the opening part for the inflow/outflow of water on the side face of the cylindrical case and so as to surround the outer periphery of the hollow fiber membrane bundle, and grooves and/or corrugated protrusions are provided on the inner face of the distribution cylinder so as to be in communication with each other among the distribution holes.