Abstract:
A path risk evaluating apparatus includes a secondary collision likelihood direction evaluating unit (108) and a secondary collision likelihood distance evaluating unit (109) which evaluate, based on the relationship between a movement path and a position of objects in an environment where a mobile device moves, the likelihood of the mobile device having primary collision with a first object and the first object further having secondary collision with a second object; a risky attribute combination evaluating unit (112) which determines degree of damage when secondary collision occurs, by referring to information, indicating degree of damage when objects in the environment collide, held by a risky attribute combination information holding unit (111); and a path evaluating unit (113) which evaluates the risk of the moving path for the mobile device, based on the evaluation result from the secondary collision likelihood direction evaluating unit (108) and the secondary collision likelihood distance evaluating unit (109) and the degree of damage determined by the risky attribute combination evaluating unit (112).
Abstract:
A path risk evaluating apparatus includes a secondary collision likelihood direction evaluating unit (108) and a secondary collision likelihood distance evaluating unit (109) which evaluate, based on the relationship between a movement path and a position of objects in an environment where a mobile device moves, the likelihood of the mobile device having primary collision with a first object and the first object further having secondary collision with a second object; a risky attribute combination evaluating unit (112) which determines degree of damage when secondary collision occurs, by referring to information, indicating degree of damage when objects in the environment collide, held by a risky attribute combination information holding unit (111); and a path evaluating unit (113) which evaluates the risk of the moving path for the mobile device, based on the evaluation result from the secondary collision likelihood direction evaluating unit (108) and the secondary collision likelihood distance evaluating unit (109) and the degree of damage determined by the risky attribute combination evaluating unit (112).
Abstract:
A danger presentation device includes a worker position acquisition unit configured to acquire a worker position which is a position of a worker; a worker view range determination unit configured to determine a view range of the worker depending on the worker position acquired by the worker position acquisition unit; a position/posture determination unit configured to determine a position/posture which contains at least one of a position of a robot and a posture of the robot at a specific time in which at least a part of the robot which operates in accordance with a motion planning is included in the view range; and an image generation unit configured to generate image data for illustrating the position/posture determined by the position/posture determination unit.
Abstract:
A motion space presentation device includes: a work area generation unit configured to generate a three-dimensional region in which the movable robot operates; an image capture unit configured to capture a real image; a position and posture detection unit configured to detect an image capture position and an image capture direction of the image capture unit; and an overlay unit configured to selectively superimpose either an image of a segment approximation model of the movable robot as viewed in the image capture direction from the image capture position, or an image of the three-dimensional region as viewed in the image capture direction from the image capture position, on the real image captured by the image capture unit, according to the difficulty in recognizing each image.
Abstract:
The danger presentation device includes: a worker position acquisition unit configured to acquire a worker position which is a position of a worker; a worker view range determination unit configured to determine a view range of the worker depending on the worker position acquired by the worker position acquisition unit; a position/posture determination unit configured to determine a position/posture which contains at least one of a position of a robot and a posture of the robot at a specific time in which at least a part of the robot which operates in accordance with a motion planning is included in the view range; and an image generation unit configured to generate image data for illustrating the position/posture determined by the position/posture determination unit.
Abstract:
To provide a charging member which suppresses the generation of density nonuniformity in an electrophotographic image caused by charge nonuniformity due to adhesion of charged substances, such as toner particles. There is provided a charging member which has a surface layer, the surface layer includes conductive zinc oxide whiskers each formed of a nuclear portion and four needle crystal portions extending radially outward therefrom, and the needle crystal portions are exposed to form convex portions of a surface of the surface layer.
Abstract:
Provided is a migration system considering security authentication levels and data protection strength levels of the both security devices between which data is migrated. A first terminal includes a mechanism for protecting data by a private key in the public key method held by TPM, and a second terminal includes a key in the private key method encrypted by the private key in the public key method held by TPM and a mechanism for protecting the data by the key. A Migration Authority holds a security policy table describing a security policy and judges whether data movement from the first terminal to the second terminal is enabled according to the security policy table.
Abstract:
To provide a program conversion device capable of executing a program that includes a secret operation using secret information without exposure of the secret information in a memory. In an execution program generation device, with respect to an original program that includes the secret operation, a combining function generation unit generates combining function processing for applying a bitwise self-dual function to an input value, a split secret information generation unit generates pieces of split secret information by performing an inverse operation of the self-dual function, a program conversion unit generates pieces of split secret operation processing each for performing the operation between each bit value of the operand information and a corresponding bit value of a different piece of the split secret information, and replaces the secret operation processing with the pieces of the split secret operation processing and the combining function processing.
Abstract:
A tamper detection device detects tampering with a program loaded to memory, at high speed and without compromising the safety. Prior to loading of a program, a dividing-size determining unit 12 determines a block size based on random number information, a dividing unit 13 divides the program by the block size into data blocks, and a first conversion unit 14 converts, by conducting a logical operation, the data blocks into intermediate authentication data no greater than the block size, and a second conversion unit 15 conducts a second conversion on the intermediate authentication data to generate authentication data. The authentication data and the block size are stored. After the program loading, a program resulting from the loading is divided by the block size, followed by the first and second conversions to generate comparative data. The comparative data is compared with the authentication data to detect tampering of the loaded program.