Abstract:
Disclosed is a monolayer touch screen, which comprises: a transparent cover glass; a transparent emboss adhesive layer coated on a surface of the transparent cover glass, wherein the transparent emboss adhesive layer has multiple grooves that are located at non-visible region; a metallic mesh layer embedded in the transparent emboss adhesive layer, and the metallic mesh layer are located at a visible region; a hairline finishing layer deposited on the surface of the multiple grooves; and an ink layer coated on the hairline finishing layer. Hairline finishing layer of such monolayer touch screen deposits directly on the surface of multiple grooves of transparent emboss adhesive layer, compared to the traditional touch screen, such monolayer touch screen is thinner and has a hairline finishing effect. Also disclosed is a method for manufacturing the monolayer touch screen.
Abstract:
On the basis of a known method for producing a blank of titanium-doped glass with a high silica content (glass) for a mirror substrate for use in EUV lithography which has a surface region that has an outer contour, is intended to be provided with a reflective coating and is specified as a highly loaded zone when the mirror substrate is used as intended, in order to provide a blank which can be produced at low cost and nevertheless meets high requirements with respect to homogeneity and freedom from blisters and striae, a procedure which comprises the following method steps is proposed: (a) producing a front body of titanium-doped high-quality glass with dimensions more than large enough to enclose the outer contour, (b) producing a cylindrical supporting body from titanium-doped glass, (c) bonding the front body and the supporting body to form a composite body, and (d) working the composite body to form the mirror substrate blank, wherein the step of producing the front body comprises a homogenizing process involving twisting a starting body obtained in the form of a strand by flame hydrolysis of a silicon-containing compound to form a front body blank, and the supporting body is formed as a monolithic glass block with less homogeneity than the front body.
Abstract:
A mosaic concrete product, methods of creating the same, and methods of fabricating a module for use in creating the mosaic are provided. The methods of installing the mosaic upon an uncured concrete surface utilize the module. The module may be fabricated by mapping out tile in a design corresponding to the mosaic; adhering the tile to a template utilizing an adhesive, the tile being positioned thereon corresponding to the design; and allowing the adhesive to set. The module may define upper and lower surfaces, the upper surface including the tile adhered thereto. The methods of installing the mosaic comprises: positioning the module upon the uncured concrete surface; embedding the tile into the concrete surface; massaging the tile into the concrete surface to interpose a quantity of cement/fines paste between the adjacent tiles; and finishing the concrete surface.
Abstract:
The present invention relates to a composite panel made from cementitious mortar characterized in that a plurality of openings pass through its complete width, each of which is filled with a transparent to light material. The invention also relates to methods for producing this panel.
Abstract:
A display device comprising a first receiving layer and a second receiving Dyer located onto and in direct planar contact with the first receiving layer; a first support later and a second support layer located onto and in direct planar contact with the first support layer; and a sleeve for receiving the first and second receiving layers and first and second support layers.
Abstract:
A micromachined structure includes a substrate and a suspended structure. The substrate has a cavity formed thereon. The suspended structure is formed on the cavity of the substrate. The suspended structure includes a first metal layer, a second metal layer, and a first dielectric layer positioned between the first and second metal layers, wherein the first dielectric layer has a first opening in communication with the cavity through an opening formed in the first metal layer.
Abstract:
A part includes a structure and at least one shape memory alloy element that is prestressed and embedded at least in part within said structure. The shape memory alloy is suitable for dissipating the mechanical energy of said structure when it vibrates in a given frequency band.
Abstract:
In one aspect the disclosure is directed to a binary silica-titania blank having a CTE of 0±30 ppb/° C. or less and a insert made of silica-titania-dopant(s) glass in the critical zone, wherein the dopants are selected from the group consisting of aluminum oxide, selected transition metal oxides, and amount of the dopants is in the range of 0.05 wt. % to 8 wt. % and the insert is fusion bonded to the blank with or without a frit. In various embodiments the dopants are selected from the group consisting of 0.25 wt. % to 8 wt. % Al2O3, 0.05 wt. % to 3 wt. % Nb2O5, and 0.25 wt. % to 6 wt. % Ta2O5.
Abstract:
The present invention relates to a fluid tight tape for a perforable package or packet, which perforable package or packet is particularly suitable for containing under vacuum foodstuff to be thermally treated, comprising: a laminar body (2), made of elastically deformable material and resistant to relatively high temperatures, designed to be applied to the perforable package or packet suitable for containing the foodstuff to be thermally treated; a glue means (4) provided at one face of the laminar body (2) facing, in use, the package or packet, the glue means (4) being designed to make the laminar body (2) tightly adhere to the package or packet, the laminar body (2) having a bare area (5), lacking glue, at which a through opening (6) is obtained. The fluid tight tape comprises an elastic insert member (7) tightly housable in and anchorable to the through opening (6) of the laminar body (2), the elastic insert member (7) being designed to remain, in use, adjacent to or in contact with the package or packet with no interposition of the glue means (4).
Abstract:
A system, method, and process for fabricating solid surface inserts for solid surface materials is provided. The solid surface inserts provide additional decorative and/or functional elements to a solid surface material. The solid surface inserts are designed and fabricated to capture the salient features of a desired design in order to integrate the desired design into the solid surface base to create an assembled solid surface. To create the assembled solid surface, the solid surface base has a pocket formed to accept the solid surface inserts. Then, the solid surface inserts are fabricated from other solid surface materials. The fabricated solid surface inserts are then assembled, interlocked, and secured, either with each other and/or with the solid surface base, using an adhesive to create the assembled solid surface.