摘要:
An optically active spirolactone compound is highly enantioselectively produced by using an iodoarene derivative which can be synthesized easily and which is not racemized easily. A hypervalent iodine compound precursor (iodoarene derivative) which was able to be designed flexibly was synthesized from 2,6-dihydroxyiodoarene by using 1,2-aminoalcohol as a chiral source in short steps, a hypervalent iodine compound was prepared in a reaction system (in situ) by using a catalyst quantity of the resulting precursor in the presence of a stoichiometric quantity of m-CPBA, and a spirolactonization reaction of 3-(1-hydroxy-2-naphthyl)propionic acid was induced. As a result, a corresponding spirolactone compound was obtained at a high enantiomeric excess.
摘要:
An optically active spirolactone compound is highly enantioselectively produced by using an iodoarene derivative which can be synthesized easily and which is not racemized easily. A hypervalent iodine compound precursor (iodoarene derivative) which was able to be designed flexibly was synthesized from 2,6-dihydroxyiodoarene by using 1,2-aminoalcohol as a chiral source in short steps, a hypervalent iodine compound was prepared in a reaction system (in situ) by using a catalyst quantity of the resulting precursor in the presence of a stoichiometric quantity of m-CPBA, and a spirolactonization reaction of 3-(1-hydroxy-2-naphthyl)propionic acid was induced. As a result, a corresponding spirolactone compound was obtained at a high enantiomeric excess.
摘要:
The present invention relates to a method for manufacturing an ester from a ketone or an aldehyde, which is a reactive substrate, by a Baeyer-Villiger oxidation reaction using hydrogen peroxide, and in this method, as a catalyst, M(BAr4)n, which is a metal borate, is used (M represents an alkali metal or an alkaline earth metal; Ar represents an aryl; and n is the same number as the valence of M). For example, when cyclohexanone was used as the reactive substrate, and Sr[B(3,5-CF3C6H3)4]2 was used as the catalyst, ε-caprolactone was obtained at an isolated yield of 82%.
摘要翻译:本发明涉及通过使用过氧化氢的Baeyer-Villiger氧化反应从作为反应性底物的酮或醛制造酯的方法,在该方法中,作为催化剂M(BAr4)n, 使用金属硼酸盐(M表示碱金属或碱土金属; Ar表示芳基; n表示与M的化合价相同的数)。 例如,当使用环己酮作为反应性底物,并且使用Sr [B(3,5-CF 3 C 6 H 3)4] 2作为催化剂时,以82%的分离收率得到ε-己内酯。
摘要:
The present invention relates to a method for manufacturing an ester from a ketone or an aldehyde, which is a reactive substrate, by a Baeyer-Villiger oxidation reaction using hydrogen peroxide, and in this method, as a catalyst, M(BAr4)n, which is a metal borate, is used (M represents an alkali metal or an alkaline earth metal; Ar represents an aryl; and n is the same number as the valence of M). For example, when cyclohexanone was used as the reactive substrate, and Sr[B(3,5-CF3C6H3)4]2 was used as the catalyst, ε-caprolactone was obtained at an isolated yield of 82%.
摘要翻译:本发明涉及通过使用过氧化氢的Baeyer-Villiger氧化反应从作为反应性底物的酮或醛制造酯的方法,在该方法中,作为催化剂M(BAr4)n, 使用金属硼酸盐(M表示碱金属或碱土金属; Ar表示芳基; n表示与M的化合价相同的数)。 例如,当使用环己酮作为反应性底物,并且使用Sr [B(3,5-CF 3 C 6 H 3)4] 2作为催化剂时,以82%的分离收率得到ε-己内酯。
摘要:
A method for producing an α-acyloxycarbonyl compound of the present invention includes performing an intermolecular reaction between a carboxylic acid and a carbonyl compound selected from the group consisting of ketones, aldehydes, and esters, which have a hydrogen atom at the α-position, using a hydroperoxide as an oxidizer and an iodide salt as a catalyst precursor, thereby introducing an acyloxy group derived from the carboxylic acid into the α-position of the carbonyl compound.
摘要:
A method for producing an α-acyloxycarbonyl compound of the present invention includes performing an intermolecular reaction between a carboxylic acid and a carbonyl compound selected from the group consisting of ketones, aldehydes, and esters, which have a hydrogen atom at the α-position, using a hydroperoxide as an oxidizer and an iodide salt as a catalyst precursor, thereby introducing an acyloxy group derived from the carboxylic acid into the α-position of the carbonyl compound.
摘要:
The invention provides a process for the preparation of a carbonyl compound in high efficiency by oxidizing an alcohol. The process for the preparation of a carbonyl compound of the present invention includes a step of oxidizing an alcohol in the presence of a compound of the formula (I) or a derivative or a salt thereof, and an oxidant, wherein R1 and R2 independently represent hydrogen, a halogen, a nitro or acidic group, or an alkyl or alkoxy group, each of which optionally has a substituent, or R1 and R2 combine the two carbon atoms to which they are boned to form an aromatic ring.
摘要:
The invention provides a process for the preparation of a carbonyl compound in high efficiency by oxidizing an alcohol. The process for the preparation of a carbonyl compound of the present invention includes a step of oxidizing an alcohol in the presence of a compound of the formula (I) or a derivative or a salt thereof, and an oxidant, wherein R1 and R2 independently represent hydrogen, a halogen, a nitro or acidic group, or an alkyl or alkoxy group, each of which optionally has a substituent, or R1 and R2 combine the two carbon atoms to which they are boned to form an aromatic ring.