Abstract:
In one embodiment, an apparatus of treating a surface of a semiconductor substrate comprises a substrate holding and rotating unit, first to fourth supplying units, and a removing unit. A substrate holding and rotating unit holds a semiconductor substrate, having a convex pattern formed on its surface, and rotates the semiconductor substrate. A first supplying unit supplies a chemical onto the surface of the semiconductor substrate in order to clean the semiconductor substrate. A second supplying unit supplies pure water to the surface of the semiconductor substrate in order to rinse the semiconductor substrate. A third supplying unit supplies a water repellent agent to the surface of the semiconductor substrate in order to form a water repellent protective film onto the surface of the convex pattern. A fourth supplying unit supplies alcohol, which is diluted with pure water, or acid water to the surface of the semiconductor substrate in order to rinse the semiconductor substrate. A removing unit removes the water repellent protective film with the convex pattern being left.
Abstract:
According to an embodiment, a manufacturing method of a semiconductor device includes: forming a first film on a processing target by using a first material; forming a second film on the first film by using a second material; selectively removing the second and first films to provide an opening pierced in the second and first films; selectively forming a metal film on an inner surface of the opening in the first film; and processing the processing target by using the metal film as a mask.
Abstract:
A method of forming an embedded film comprises depositing a first layer on a second layer that is disposed on a substrate and includes a material different from materials included in the first layer, forming an aperture through the first layer and into the second layer, the aperture having a side surface that includes an exposed portion of the first layer and an exposed portion of the second layer, bringing a material that includes organic molecules into contact with the exposed portion of the first layer and the exposed portion of the second layer to form a monomolecular film that covers the side surface, and forming the embedded film in the aperture with a material having a high enough affinity to the monomolecular film to substantially fill the aperture.
Abstract:
A substrate processing method and apparatus for preventing evaporation of an anti-drying fluorine-containing organic solvent from a substrate during transportation of the substrate into a processing container and can prevent decomposition of a fluorine-containing organic solvent in the processing container. A substrate, the surface of which is covered with a first fluorine-containing organic solvent, is carried into a processing container. The first fluorine-containing organic solvent is removed from the substrate surface by forming a high-pressure fluid atmosphere of a mixture of the first fluorine-containing organic solvent and a second fluorine-containing organic solvent, having a lower boiling point than the first fluorine-containing organic solvent, in the processing container e.g. by supplying a high-pressure fluid of the second fluorine-containing organic solvent into the processing container. Thereafter, a fluid in the state of a high-pressure fluid or a gas is discharged from the processing container to obtain the substrate in the dried state.
Abstract:
According to one embodiment, a manufacturing method includes forming a desired pattern containing an uneven pattern on a substrate, subjecting the surface of the desired pattern to a water repellent treatment, forming a resist film on the desired pattern, performing an exposure treatment to expose the uneven pattern, rinsing the substrate with water, and drying the substrate.