Abstract:
The present disclosure relates to a multilayer reinforced composite electrolyte membrane and a method for manufacturing the same. The multilayer reinforced composite electrolyte membrane according to the present disclosure has sufficient mechanical properties and improved membrane resistance at the same time since a porous support is impregnated in an ionomer and it is stacked in a multilayer structure. Furthermore, since the composite electrolyte membrane has no wrinkles and cracks due to excellent dimensional stability, it can improve the electrochemical properties of batteries.
Abstract:
Disclosed are a catalyst electrode for a fuel cell, a method for fabricating the catalyst electrode, and a fuel cell including the catalyst electrode. The presence of an ionomer-ionomer support composite in the catalyst electrode prevents the porous structure of the catalyst electrode from collapsing due to oxidation of a carbon support to avoid an increase in resistance to gas diffusion and can stably secure proton channels. The presence of carbon materials with high conductivity is effective in preventing the electrical conductivity of the electrode from deterioration resulting from the use of a metal oxide in the ionomer-ionomer support composite and is also effective in suppressing collapse of the porous structure of the electrode to prevent an increase in resistance to gas diffusion in the electrode. Based on these effects, the fuel cell exhibits excellent performance characteristics and prevents its performance from deteriorating during continuous operation.
Abstract:
A membrane electrode assembly includes a cation exchange membrane electrode assembly and an anion exchange membrane electrode assembly. The cation exchange membrane includes a cation exchange membrane, a first cathode electrode disposed on the cation exchange membrane, and a first anode electrode disposed under the cation exchange membrane. The anion exchange membrane electrode assembly includes an anion exchange membrane, a second cathode electrode disposed on the anion exchange membrane, and a second anode electrode disposed under the anion exchange membrane. The cation exchange membrane and the anion exchange membrane partially contact each other, and the first cathode electrode, the first anode electrode, the second cathode electrode, and the second anode electrode do not contact one another.
Abstract:
Disclosed are a method for preparing a pure isophthalaldehyde bisulfite adduct free from impurities through a specific purification process, and use thereof as a starting material for polymerizing polybenzimidazole under a mild condition. According to the present disclosure, it is possible to obtain a pure isophthalaldehyde bisulfite adduct free from impurities, such as unreacted materials or byproducts. In addition, it is possible to accomplish industrial mass production of a high-molecular weight polybenzimidazole by using the adduct as a starting material for polymerizing polybenzimidazole under a mild condition in an organic solvent.
Abstract:
Disclosed are a reversible fuel cell oxygen electrode in which IrO2 is electrodeposited and formed on a porous carbon material and platinum is applied thereon to form a porous platinum layer, a reversible fuel cell including the same, and a method for preparing the same. According to the corresponding reversible fuel cell oxygen electrode, as the loading amounts of IrO2 and platinum used in the reversible fuel cell oxygen electrode can be lowered, it is possible to exhibit excellent reversible fuel cell performances (excellent fuel cell performance and water electrolysis performance) by improving the mass transport of water and oxygen while being capable of reducing the loading amounts of IrO2 and platinum. Further, it is possible to exhibit a good activity of a catalyst when the present disclosure is applied to a reversible fuel cell oxygen electrode and to reduce corrosion of carbon.
Abstract:
Disclosed is an electrolyte membrane for a fuel cell including a polymer blend of a sulfonated polyethersulfone copolymer, hydroxyl group-containing polyethersulfone copolymer and a hydroxyl group-containing sulfonated polyethersulfone copolymer.
Abstract:
The present disclosure relates to a method for preparing a catalyst for a fuel cell, a catalyst for a fuel cell and a fuel cell including the same. More specifically, the catalyst for a fuel cell according to the present disclosure, wherein ruthenium chalcogenide including the 1T phase exists as single-walled nanotubes, can reduce manufacturing cost by exhibiting superior catalytic activity so as to replace the existing platinum catalyst and can significantly improve stability.
Abstract:
The present disclosure relates to a styrene-based copolymer for an electrode binder of a solid alkaline fuel cell, represented by the following Chemical Formula 1, an electrode binder including the same, and a membrane electrode assembly including the electrode binder. The electrode binder for a solid alkaline fuel cell is obtained by dispersing the styrene-based copolymer for an electrode binder in a mixed solvent of alcohol with water. Thus, even when coating electrode catalyst slurry including the electrode binder directly on an electrolyte membrane, the electrolyte membrane is not damaged so that the quality of a solid alkaline fuel cell using the same may be improved. wherein x is an integer of 2-10, and each of m and n represents the number of repeating units.
Abstract:
Disclosed is a method for producing an electrode for a high temperature polymer electrolyte membrane fuel cell. According to the method, a catalyst slurry containing a uniformly dispersed binder is used to produce an electrode. Also disclosed are a membrane electrode assembly using the electrode and a high temperature polymer electrolyte membrane fuel cell including the membrane electrode assembly. Uniform distribution of the binder leads to improvements in the performance and reproducibility of the fuel cell.
Abstract:
The present disclosure relates to a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst. More particularly, the present disclosure provides a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst using a stabilizer, the method including the steps of: (a) mixing a platinum precursor, a transition metal precursor, carbon, stabilizer and a reducing agent solution, and carrying out washing and drying to obtain carbon-supported platinum-transition metal alloy nanoparticles; (b) mixing the carbon-supported platinum-transition metal alloy nanoparticles with an acetic acid solution, and carrying out washing and drying to obtain acetic acid-treated nanoparticles; and (c) heat treating the acetic acid-treated nanoparticles. Thus, it is possible to obtain a carbon-supported platinum-transition metal alloy nanoparticle catalyst through a more simple and eco-friendly process as compared to the related art, and to apply the catalyst to a high-performance and high-durability fuel cell catalyst.