Abstract:
The present disclosure relates to a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst. More particularly, the present disclosure provides a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst using a stabilizer, the method including the steps of: (a) mixing a platinum precursor, a transition metal precursor, carbon, stabilizer and a reducing agent solution, and carrying out washing and drying to obtain carbon-supported platinum-transition metal alloy nanoparticles; (b) mixing the carbon-supported platinum-transition metal alloy nanoparticles with an acetic acid solution, and carrying out washing and drying to obtain acetic acid-treated nanoparticles; and (c) heat treating the acetic acid-treated nanoparticles. Thus, it is possible to obtain a carbon-supported platinum-transition metal alloy nanoparticle catalyst through a more simple and eco-friendly process as compared to the related art, and to apply the catalyst to a high-performance and high-durability fuel cell catalyst.
Abstract:
Provided is an electrocatalyst for anion exchange membrane water electrolysis, including a carbonaceous material, and nickel electrodeposited on the carbonaceous material, wherein nickel is partially substituted with platinum and the substitution with platinum provides increased hydrogen evolution activity as compared to the same electrocatalyst before substitution with platinum. Also provided are a method for preparing the electrocatalyst and an anion exchange membrane water electrolyzer using the same. The nickel electrocatalyst coated with an ultralow loading amount of platinum for anion exchange membrane water electrolysis shows excellent hydrogen evolution activity and has a small thickness of catalyst, thereby providing high mass transfer and high catalyst availability. In addition, the electrocatalyst uses a particle-type electrode to facilitate emission of hydrogen bubbles generated during hydrogen evolution reaction and oxygen bubbles generated during oxygen evolution reaction, and requires low cost for preparation to provide high cost-efficiency.
Abstract:
The present disclosure relates to a PtAu nanoparticle catalyst heat-treated in the presence of carbon monoxide (CO) and a method for preparing same. Since the PtxAuy nanoparticle catalyst heat-treated under CO atmosphere has high Pt surface area and superior oxygen reduction reaction (ORR) activity, a high-efficiency, high-quality fuel cell can be achieved by applying the catalyst to a fuel cell.
Abstract:
Disclosed is a hydrogen pump system operable without external electric power supply. The hydrogen pump system is capable of separating or purifying hydrogen without an external electric power supply.
Abstract:
The present disclosure relates to an IrO2 electrodeposited porous titanium composite layer of a polymer electrolyte membrane water electrolysis apparatus serving as both a diffusion layer and an oxygen electrode, the apparatus including: a porous titanium (Ti) layer; and an electrodeposited iridium oxide (IrO2) layer on the porous Ti layer. The IrO2 layer may be uniformly deposited on a porous Ti layer through an electrolysis process, and the electrodeposited IrO2 layer may play multiple roles as not only a catalyst layer toward oxygen evolution reaction (OER) on the surface of the Ti layer, but also a corrosion-protection layer which prevents an inner Ti layer from corrosion.
Abstract:
In a complex system including a desalination plant and a reverse electrodialysis equipment, a concentrated sea water discharged from the desalination plant having a salt concentration of about 50 to 75 g/L or about 50 to 60 g/L is provided as a high-concentration salt solution of the reverse electrodialysis equipment while low salinity water having a salt concentration of about 0.01 to 2 g/L, most preferably about 0.01 to 1 g/L, is provided as a low-concentration salt solution of the reverse electrodialysis equipment. Thereby, a recycling degree of a concentrated sea water may be enhanced as well as a power density produced by the complex system is significantly improved.
Abstract:
Provided are cardo copolybenzimidazoles, a gas separation membrane using the same and a method for preparing the same. More particularly, provided are cardo copolybenzimidazoles obtained by introducing cardo groups and aromatic ether groups to a polybenzimidazole backbone, a gas separation membrane having significantly improved oxygen permeability by using the same, and a method for preparing the same. The cardo copolybenzimidazoles have improved solubility as compared to the polybenzimidazole polymers according to the related art, show excellent mechanical properties while maintaining thermal stability so as to be formed into a film shape, and provide a gas separation membrane having significantly improved gas permeability, particularly, oxygen permeability.
Abstract:
Disclosed are a reversible fuel cell oxygen electrode in which IrO2 is electrodeposited and formed on a porous carbon material and platinum is applied thereon to form a porous platinum layer, a reversible fuel cell including the same, and a method for preparing the same. According to the corresponding reversible fuel cell oxygen electrode, as the loading amounts of IrO2 and platinum used in the reversible fuel cell oxygen electrode can be lowered, it is possible to exhibit excellent reversible fuel cell performances (excellent fuel cell performance and water electrolysis performance) by improving the mass transport of water and oxygen while being capable of reducing the loading amounts of IrO2 and platinum. Further, it is possible to exhibit a good activity of a catalyst when the present disclosure is applied to a reversible fuel cell oxygen electrode and to reduce corrosion of carbon.
Abstract:
Disclosed is a carbon support for a fuel cell catalyst that supports a metal. The carbon support includes a conductive carbon support and nitrogen atoms doped into the conductive carbon support. Also disclosed is a method for preparing the carbon support. Also disclosed is a catalyst including the carbon support. The catalyst has greatly improved degradation resistance compared to conventional catalysts for fuel cells. In addition, the catalyst is not substantially degraded even when applied to a single cell.
Abstract:
Provided are a ceria-based composition including ceria or metal-doped ceria, lithium salt, and optionally, bismuth oxide, ceria-based composite electrolyte powder, and a sintering method and sintered body using the same. Particularly, the lithium salt is present in an amount more than 0 wt % and equal to or less than 5 wt %, and bismuth oxide is present in an amount more than 0 wt % and equal to or less than 10 wt %. It is possible to reduce sintering temperature by adding a low-melting point and/or volatile compound to a ceria-based material. In this manner, it is possible to ensure a high composite sintering density, for example, of 95% or more even at a temperature, for example, of 1000° C. or lower, which is significantly lower than the conventional sintering temperature of 1500° C. in the case of a ceria-based material alone.